These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1620 related articles for article (PubMed ID: 20559327)
1. FOXP3+ regulatory T cells in the human immune system. Sakaguchi S; Miyara M; Costantino CM; Hafler DA Nat Rev Immunol; 2010 Jul; 10(7):490-500. PubMed ID: 20559327 [TBL] [Abstract][Full Text] [Related]
2. Interleukin-7 matures suppressive CD127(+) forkhead box P3 (FoxP3)(+) T cells into CD127(-) CD25(high) FoxP3(+) regulatory T cells. Di Caro V; D'Anneo A; Phillips B; Engman C; Harnaha J; Lakomy R; Styche A; Trucco M; Giannoukakis N Clin Exp Immunol; 2011 Jul; 165(1):60-76. PubMed ID: 21413939 [TBL] [Abstract][Full Text] [Related]
3. Plasticity of T(reg) cells: is reprogramming of T(reg) cells possible in the presence of FOXP3? Beyer M; Schultze JL Int Immunopharmacol; 2011 May; 11(5):555-60. PubMed ID: 21115121 [TBL] [Abstract][Full Text] [Related]
4. CD4(+)CD25 (+) regulatory T cells in human lupus erythematosus. Kuhn A; Beissert S; Krammer PH Arch Dermatol Res; 2009 Jan; 301(1):71-81. PubMed ID: 18985367 [TBL] [Abstract][Full Text] [Related]
5. TCR repertoire and Foxp3 expression define functionally distinct subsets of CD4+ regulatory T cells. Kuczma M; Pawlikowska I; Kopij M; Podolsky R; Rempala GA; Kraj P J Immunol; 2009 Sep; 183(5):3118-29. PubMed ID: 19648277 [TBL] [Abstract][Full Text] [Related]
6. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Maynard CL; Harrington LE; Janowski KM; Oliver JR; Zindl CL; Rudensky AY; Weaver CT Nat Immunol; 2007 Sep; 8(9):931-41. PubMed ID: 17694059 [TBL] [Abstract][Full Text] [Related]
7. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Williams LM; Rudensky AY Nat Immunol; 2007 Mar; 8(3):277-84. PubMed ID: 17220892 [TBL] [Abstract][Full Text] [Related]
8. The role of regulatory T cell (Treg) subsets in gestational diabetes mellitus. Schober L; Radnai D; Spratte J; Kisielewicz A; Schmitt E; Mahnke K; Fluhr H; Uhlmann L; Sohn C; Steinborn A Clin Exp Immunol; 2014 Jul; 177(1):76-85. PubMed ID: 24547967 [TBL] [Abstract][Full Text] [Related]
9. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Marson A; Kretschmer K; Frampton GM; Jacobsen ES; Polansky JK; MacIsaac KD; Levine SS; Fraenkel E; von Boehmer H; Young RA Nature; 2007 Feb; 445(7130):931-5. PubMed ID: 17237765 [TBL] [Abstract][Full Text] [Related]
10. The importance of regulatory T-cell heterogeneity in maintaining self-tolerance. Yuan X; Cheng G; Malek TR Immunol Rev; 2014 May; 259(1):103-14. PubMed ID: 24712462 [TBL] [Abstract][Full Text] [Related]
11. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets. Pyzik M; Piccirillo CA J Leukoc Biol; 2007 Aug; 82(2):335-46. PubMed ID: 17475784 [TBL] [Abstract][Full Text] [Related]
12. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Zheng Y; Josefowicz S; Chaudhry A; Peng XP; Forbush K; Rudensky AY Nature; 2010 Feb; 463(7282):808-12. PubMed ID: 20072126 [TBL] [Abstract][Full Text] [Related]
13. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. Lim HW; Broxmeyer HE; Kim CH J Immunol; 2006 Jul; 177(2):840-51. PubMed ID: 16818738 [TBL] [Abstract][Full Text] [Related]
14. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. Klunker S; Chong MM; Mantel PY; Palomares O; Bassin C; Ziegler M; Rückert B; Meiler F; Akdis M; Littman DR; Akdis CA J Exp Med; 2009 Nov; 206(12):2701-15. PubMed ID: 19917773 [TBL] [Abstract][Full Text] [Related]
15. Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. von Boehmer H; Daniel C Nat Rev Drug Discov; 2013 Jan; 12(1):51-63. PubMed ID: 23274471 [TBL] [Abstract][Full Text] [Related]
16. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Collison LW; Workman CJ; Kuo TT; Boyd K; Wang Y; Vignali KM; Cross R; Sehy D; Blumberg RS; Vignali DA Nature; 2007 Nov; 450(7169):566-9. PubMed ID: 18033300 [TBL] [Abstract][Full Text] [Related]
17. Functional plasticity in human FOXP3(+) regulatory T cells: implications for cell-based immunotherapy. d'Hennezel E; Piccirillo CA Hum Vaccin Immunother; 2012 Jul; 8(7):1001-5. PubMed ID: 22484225 [TBL] [Abstract][Full Text] [Related]
18. Regulatory T Cells: the Many Faces of Foxp3. Georgiev P; Charbonnier LM; Chatila TA J Clin Immunol; 2019 Oct; 39(7):623-640. PubMed ID: 31478130 [TBL] [Abstract][Full Text] [Related]
19. T cell signaling targets for enhancing regulatory or effector function. Pan F; Fan H; Liu Z; Jiang S Sci Signal; 2012 Jul; 5(235):pe32. PubMed ID: 22855503 [TBL] [Abstract][Full Text] [Related]
20. Expression of the autoimmune susceptibility gene FcRL3 on human regulatory T cells is associated with dysfunction and high levels of programmed cell death-1. Swainson LA; Mold JE; Bajpai UD; McCune JM J Immunol; 2010 Apr; 184(7):3639-47. PubMed ID: 20190142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]