These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2055955)

  • 1. Rotating the plane of imposed vibration can rotate the plane of flagellar beating in sea-urchin sperm without twisting the axoneme.
    Shingyoji C; Katada J; Takahashi K; Gibbons IR
    J Cell Sci; 1991 Feb; 98 ( Pt 2)():175-81. PubMed ID: 2055955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarity in spontaneous unwinding after prior rotation of the flagellar beat plane in sea-urchin spermatozoa.
    Takahashi K; Shingyoji C; Katada J; Eshel D; Gibbons IR
    J Cell Sci; 1991 Feb; 98 ( Pt 2)():183-9. PubMed ID: 2055956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous recovery after experimental manipulation of the plane of beat in sperm flagella.
    Gibbons IR; Shingyoji C; Murakami A; Takahashi K
    Nature; 1987 Jan 22-28; 325(6102):351-2. PubMed ID: 3808030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella.
    Bannai H; Yoshimura M; Takahashi K; Shingyoji C
    J Cell Sci; 2000 Mar; 113 ( Pt 5)():831-9. PubMed ID: 10671372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of imposed head vibration on the stability and waveform of flagellar beating in sea urchin spermatozoa.
    Shingyoji C; Gibbons IR; Murakami A; Takahashi K
    J Exp Biol; 1991 Mar; 156():63-80. PubMed ID: 2051139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of beat frequency on the velocity of microtubule sliding in reactivated sea urchin sperm flagella under imposed head vibration.
    Shingyoji C; Yoshimura K; Eshel D; Takahashi K; Gibbons IR
    J Exp Biol; 1995 Mar; 198(Pt 3):645-53. PubMed ID: 7714454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella.
    Brokaw CJ
    Science; 1989 Mar; 243(4898):1593-6. PubMed ID: 2928796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory mechanisms of sperm flagellar motility by metachronal and synchronous sliding of doublet microtubules.
    Takei GL; Fujinoki M; Yoshida K; Ishijima S
    Mol Hum Reprod; 2017 Dec; 23(12):817-826. PubMed ID: 29040653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails.
    Sale WS
    J Cell Biol; 1986 Jun; 102(6):2042-52. PubMed ID: 2940250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the regulation of dynein activity during flagellar motility.
    Shingyoji C
    Methods Enzymol; 2013; 524():147-69. PubMed ID: 23498739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phase of sperm flagellar beating is not conserved over a brief imposed interruption.
    Eshel D; Shingyoji C; Yoshimura K; Gibbons IR; Takahashi K
    Exp Cell Res; 1992 Oct; 202(2):552-5. PubMed ID: 1397107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External mechanical control of the timing of bend initiation in sea urchin sperm flagella.
    Eshel D; Gibbons IR
    Cell Motil Cytoskeleton; 1989; 14(3):416-23. PubMed ID: 2582499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of flagellar waveform and adenosine triphosphatase activity in reactivated sea-urchin sperm treated with N-ethylmaleimide.
    Cosson MP; Tang WJ; Gibbons IR
    J Cell Sci; 1983 Mar; 60():231-49. PubMed ID: 6223931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The velocity of microtubule sliding: its stability and load dependency.
    Ishijima S
    Cell Motil Cytoskeleton; 2007 Nov; 64(11):809-13. PubMed ID: 17685439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexural rigidity of echinoderm sperm flagella.
    Ishijima S; Hiramoto Y
    Cell Struct Funct; 1994 Dec; 19(6):349-62. PubMed ID: 7720094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direction of force generated by the inner row of dynein arms on flagellar microtubules.
    Fox LA; Sale WS
    J Cell Biol; 1987 Oct; 105(4):1781-7. PubMed ID: 2959667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Sustained Oscillatory Sliding Movement of Doublet Microtubules and Flagellar Bend Formation.
    Ishijima S
    PLoS One; 2016; 11(2):e0148880. PubMed ID: 26863204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient flagellar waveforms during intermittent swimming in sea urchin sperm. I. Wave parameters.
    Gibbons IR; Gibbons BH
    J Muscle Res Cell Motil; 1980 Mar; 1(1):31-59. PubMed ID: 7229022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inner arm dynein ATPase fraction of sea urchin sperm flagella causes active sliding of axonemal outer doublet microtubule.
    Wada S; Okuno M; Mohri H
    Biochem Biophys Res Commun; 1991 Feb; 175(1):173-8. PubMed ID: 1825599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-frequency vibration in flagellar axonemes with amplitudes reflecting the size of tubulin.
    Kamimura S; Kamiya R
    J Cell Biol; 1992 Mar; 116(6):1443-54. PubMed ID: 1531831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.