These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 20560001)
41. Mavacamten preserves length-dependent contractility and improves diastolic function in human engineered heart tissue. Sewanan LR; Shen S; Campbell SG Am J Physiol Heart Circ Physiol; 2021 Mar; 320(3):H1112-H1123. PubMed ID: 33449850 [TBL] [Abstract][Full Text] [Related]
42. Worse prognosis with gene mutations of beta-myosin heavy chain than myosin-binding protein C in Chinese patients with hypertrophic cardiomyopathy. Wang S; Zou Y; Fu C; Xu X; Wang J; Song L; Wang H; Chen J; Wang J; Huan T; Hui R Clin Cardiol; 2008 Mar; 31(3):114-8. PubMed ID: 18383048 [TBL] [Abstract][Full Text] [Related]
44. Functional analysis of myosin mutations that cause familial hypertrophic cardiomyopathy. Roopnarine O; Leinwand LA Biophys J; 1998 Dec; 75(6):3023-30. PubMed ID: 9826622 [TBL] [Abstract][Full Text] [Related]
45. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. Watkins H; Rosenzweig A; Hwang DS; Levi T; McKenna W; Seidman CE; Seidman JG N Engl J Med; 1992 Apr; 326(17):1108-14. PubMed ID: 1552912 [TBL] [Abstract][Full Text] [Related]
46. Double heterozygosity for mutations in the beta-myosin heavy chain and in the cardiac myosin binding protein C genes in a family with hypertrophic cardiomyopathy. Richard P; Isnard R; Carrier L; Dubourg O; Donatien Y; Mathieu B; Bonne G; Gary F; Charron P; Hagege M; Komajda M; Schwartz K; Hainque B J Med Genet; 1999 Jul; 36(7):542-5. PubMed ID: 10424815 [TBL] [Abstract][Full Text] [Related]
47. The structural and functional effects of the familial hypertrophic cardiomyopathy-linked cardiac troponin C mutation, L29Q. Robertson IM; Sevrieva I; Li MX; Irving M; Sun YB; Sykes BD J Mol Cell Cardiol; 2015 Oct; 87():257-69. PubMed ID: 26341255 [TBL] [Abstract][Full Text] [Related]
48. Expression of a mutation causing hypertrophic cardiomyopathy disrupts sarcomere assembly in adult feline cardiac myocytes. Marian AJ; Yu QT; Mann DL; Graham FL; Roberts R Circ Res; 1995 Jul; 77(1):98-106. PubMed ID: 7788887 [TBL] [Abstract][Full Text] [Related]
49. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. van Dijk SJ; Dooijes D; dos Remedios C; Michels M; Lamers JM; Winegrad S; Schlossarek S; Carrier L; ten Cate FJ; Stienen GJ; van der Velden J Circulation; 2009 Mar; 119(11):1473-83. PubMed ID: 19273718 [TBL] [Abstract][Full Text] [Related]
50. Hypertrophic cardiomyopathy mutations in the pliant and light chain-binding regions of the lever arm of human β-cardiac myosin have divergent effects on myosin function. Morck MM; Bhowmik D; Pathak D; Dawood A; Spudich J; Ruppel KM Elife; 2022 Jun; 11():. PubMed ID: 35767336 [TBL] [Abstract][Full Text] [Related]
51. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability. Smelter DF; de Lange WJ; Cai W; Ge Y; Ralphe JC Am J Physiol Heart Circ Physiol; 2018 Jun; 314(6):H1179-H1191. PubMed ID: 29451820 [TBL] [Abstract][Full Text] [Related]
52. Differential cross-bridge kinetics of FHC myosin mutations R403Q and R453C in heterozygous mouse myocardium. Palmer BM; Fishbaugher DE; Schmitt JP; Wang Y; Alpert NR; Seidman CE; Seidman JG; VanBuren P; Maughan DW Am J Physiol Heart Circ Physiol; 2004 Jul; 287(1):H91-9. PubMed ID: 15001446 [TBL] [Abstract][Full Text] [Related]
53. [Familial hypertrophic cardiomyopathy: genes, mutations and animal models. A review]. Ramírez CD; Padrón R Invest Clin; 2004 Mar; 45(1):69-99. PubMed ID: 15058760 [TBL] [Abstract][Full Text] [Related]
54. Hypertrophic Cardiomyopathy: Diverse Pathophysiology Revealed by Genetic Research, Toward Future Therapy. Hayashi T Keio J Med; 2020 Dec; 69(4):77-87. PubMed ID: 32224552 [TBL] [Abstract][Full Text] [Related]
55. Homologous mutations in human β, embryonic, and perinatal muscle myosins have divergent effects on molecular power generation. Liu C; Karabina A; Meller A; Bhattacharjee A; Agostino CJ; Bowman GR; Ruppel KM; Spudich JA; Leinwand LA Proc Natl Acad Sci U S A; 2024 Feb; 121(9):e2315472121. PubMed ID: 38377203 [TBL] [Abstract][Full Text] [Related]
56. Structural effects of the slow/b-cardiac myosin heavy chain R453C mutation in cardiac and skeletal muscle. Tajsharghi H; Fyhr IM Scand Cardiovasc J; 2008 Apr; 42(2):153-6. PubMed ID: 18365899 [TBL] [Abstract][Full Text] [Related]
57. Familial hypertrophic cardiomyopathy can be characterized by a specific pattern of orientation fluctuations of actin molecules . Borejdo J; Szczesna-Cordary D; Muthu P; Calander N Biochemistry; 2010 Jun; 49(25):5269-77. PubMed ID: 20509708 [TBL] [Abstract][Full Text] [Related]
58. Clinical features, spectrum of causal genetic mutations and outcome of hypertrophic cardiomyopathy in South Africans. Ntusi NA; Shaboodien G; Badri M; Gumedze F; Mayosi BM Cardiovasc J Afr; 2016; 27(3):152-158. PubMed ID: 27841901 [TBL] [Abstract][Full Text] [Related]
59. Myocardial KRAS(G12D) expression does not cause cardiomyopathy in mice. Dalin MG; Zou Z; Scharin-Täng M; Safari R; Karlsson C; Bergo MO Cardiovasc Res; 2014 Feb; 101(2):229-35. PubMed ID: 24259500 [TBL] [Abstract][Full Text] [Related]
60. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. Kawana M; Sarkar SS; Sutton S; Ruppel KM; Spudich JA Sci Adv; 2017 Feb; 3(2):e1601959. PubMed ID: 28246639 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]