These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 20560089)

  • 1. Removal of selected nuisance anions by Octolig.
    Martin DF; Lizardi CL; Schulman E; Vo B; Wynn D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Jan; 45(9):1144-9. PubMed ID: 20560089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of effectiveness of removal of nuisance anions by metalloligs, metal derivatives of Octolig.
    Martin DF; Aguinaldo JS; Kondis NP; Stull FW; O'Donnell LF; Martin BB; Alldredge RL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Sep; 43(11):1296-302. PubMed ID: 18642153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative ease of separation of mixtures of selected nuisance anions (nitrate, nitrite, sulfate, phosphate) using Octolig.
    Stull FW; Martin DF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Dec; 44(14):1545-50. PubMed ID: 20183512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of nuisance aqueous anions with Ferrilig.
    Martin DF; O'Donnell LF; Martin BB; Alldredge RL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):700-4. PubMed ID: 18444071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effectiveness of removal of aqueous perchlorate by Cuprilig, a copper(II) derivative of Octolig.
    Martin DF; Kondis NP; Alldredge RL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(2):188-91. PubMed ID: 19123099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of pain-relieving drugs from aqueous solutions using Octolig and selected metalloligs.
    Martin DF; Sehgal T; Word TA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(8):788-93. PubMed ID: 26030684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of anion removal capacities of Octolig and Cuprilig.
    Martin DF; Franz DM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1619-24. PubMed ID: 22077670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efforts to remove aqueous lithium ion using Octolig® and methylated derivatives.
    Martin DF; Bisht KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):946-949. PubMed ID: 29775126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.
    Saikia J; Saha B; Das G
    J Hazard Mater; 2011 Feb; 186(1):575-82. PubMed ID: 21144648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of removal of a popular NSAID from aqueous solutions with metalloligs.
    Martin DF; Hurst J; Mayers J; McKeithan CF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(8):782-785. PubMed ID: 31046561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of anions sorption on natural zeolites.
    Barczyk K; Mozgawa W; Król M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():876-82. PubMed ID: 25002191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling oxyanion adsorption on ferralic soil, part 2: chromate, selenate, molybdate, and arsenate adsorption.
    Pérez C; Antelo J; Fiol S; Arce F
    Environ Toxicol Chem; 2014 Oct; 33(10):2217-24. PubMed ID: 24648298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of selected NSAIDs (nonsteroidal anti-inflammatory drugs) in aqueous samples by Octolig®.
    Martin DF; Martin JM; Word TA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jan; 51(2):186-191. PubMed ID: 26606390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding and removal of sulfate, phosphate, arsenate, tetrachloromercurate, and chromate in aqueous solution by means of an activated carbon functionalized with a pyrimidine-based anion receptor (HL). Crystal structures of [H3L(HgCl4)]·H2O and [H3L(HgBr4)]·H2O showing anion-π interactions.
    Arranz P; Bianchi A; Cuesta R; Giorgi C; Godino ML; Gutiérrez MD; López R; Santiago A
    Inorg Chem; 2010 Oct; 49(20):9321-32. PubMed ID: 20836504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration.
    Mak MS; Lo IM; Liu T
    Water Res; 2011 Dec; 45(19):6575-84. PubMed ID: 22018698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of anionic contaminants by surfactant modified powdered activated carbon (SM-PAC) combined with ultrafiltration.
    Hong HJ; Kim H; Lee YJ; Yang JW
    J Hazard Mater; 2009 Oct; 170(2-3):1242-6. PubMed ID: 19540668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of chromate by clinoptilolite exchanged with various metal cations.
    Faghihian H; Bowman RS
    Water Res; 2005 Mar; 39(6):1099-104. PubMed ID: 15766964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of chromate anions from aqueous solution by a cationic surfactant-modified lichen (Cladonia rangiformis (L.)).
    Bingol A; Aslan A; Cakici A
    J Hazard Mater; 2009 Jan; 161(2-3):747-52. PubMed ID: 18502042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorptive removal of fluoride from aqueous solution using orange waste loaded with multi-valent metal ions.
    Paudyal H; Pangeni B; Inoue K; Kawakita H; Ohto K; Harada H; Alam S
    J Hazard Mater; 2011 Aug; 192(2):676-82. PubMed ID: 21683523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of synthetic food dyes in aqueous solution by Octolig.
    Martin DF; Alessio RJ; McCane CH
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):495-500. PubMed ID: 23383634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.