BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 20560144)

  • 1. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide.
    Chen YS; Chen CC; Horng JC
    Biopolymers; 2011; 96(1):60-8. PubMed ID: 20560144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the -Gly-3(S)-hydroxyprolyl-4(R)-hydroxyprolyl- tripeptide unit on the stability of collagen model peptides.
    Mizuno K; Peyton DH; Hayashi T; Engel J; Bächinger HP
    FEBS J; 2008 Dec; 275(23):5830-40. PubMed ID: 19021759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides.
    Yang W; Battineni ML; Brodsky B
    Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple-helix propensity of hydroxyproline and fluoroproline: comparison of host-guest and repeating tripeptide collagen models.
    Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B
    J Am Chem Soc; 2003 Sep; 125(38):11500-1. PubMed ID: 13129344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of triple-helical structures of collagen peptides containing a Hyp-Thr-Gly, Hyp-Val-Gly, or Hyp-Ser-Gly sequence.
    Okuyama K; Miyama K; Morimoto T; Masakiyo K; Mizuno K; Bächinger HP
    Biopolymers; 2011 Sep; 95(9):628-40. PubMed ID: 21442606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine.
    Beck K; Chan VC; Shenoy N; Kirkpatrick A; Ramshaw JA; Brodsky B
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4273-8. PubMed ID: 10725403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of 3-hydroxyproline residues on collagen stability.
    Jenkins CL; Bretscher LE; Guzei IA; Raines RT
    J Am Chem Soc; 2003 May; 125(21):6422-7. PubMed ID: 12785781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture.
    Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB
    Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix.
    Nishi Y; Uchiyama S; Doi M; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y
    Biochemistry; 2005 Apr; 44(16):6034-42. PubMed ID: 15835892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders.
    Persikov AV; Pillitteri RJ; Amin P; Schwarze U; Byers PH; Brodsky B
    Hum Mutat; 2004 Oct; 24(4):330-7. PubMed ID: 15365990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational effects of Gly-X-Gly interruptions in the collagen triple helix.
    Bella J; Liu J; Kramer R; Brodsky B; Berman HM
    J Mol Biol; 2006 Sep; 362(2):298-311. PubMed ID: 16919298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability junction at a common mutation site in the collagenous domain of the mannose binding lectin.
    Mohs A; Li Y; Doss-Pepe E; Baum J; Brodsky B
    Biochemistry; 2005 Feb; 44(6):1793-9. PubMed ID: 15697204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR and CD spectroscopy show that imino acid restriction of the unfolded state leads to efficient folding.
    Xu Y; Hyde T; Wang X; Bhate M; Brodsky B; Baum J
    Biochemistry; 2003 Jul; 42(29):8696-703. PubMed ID: 12873129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly)10.
    Doi M; Nishi Y; Uchiyama S; Nishiuchi Y; Nishio H; Nakazawa T; Ohkubo T; Kobayashi Y
    J Pept Sci; 2005 Oct; 11(10):609-16. PubMed ID: 15880478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severity of osteogenesis imperfecta and structure of a collagen-like peptide modeling a lethal mutation site.
    Radmer RJ; Klein TE
    Biochemistry; 2004 May; 43(18):5314-23. PubMed ID: 15122897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen model peptides: Sequence dependence of triple-helix stability.
    Persikov AV; Ramshaw JA; Brodsky B
    Biopolymers; 2000; 55(6):436-50. PubMed ID: 11304671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural consequences of D-amino acids in collagen triple-helical peptides.
    Shah NK; Brodsky B; Kirkpatrick A; Ramshaw JA
    Biopolymers; 1999 Apr; 49(4):297-302. PubMed ID: 10079768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide.
    Bhate M; Wang X; Baum J; Brodsky B
    Biochemistry; 2002 May; 41(20):6539-47. PubMed ID: 12009919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A host-guest set of triple-helical peptides: stability of Gly-X-Y triplets containing common nonpolar residues.
    Shah NK; Ramshaw JA; Kirkpatrick A; Shah C; Brodsky B
    Biochemistry; 1996 Aug; 35(32):10262-8. PubMed ID: 8756681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.