BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 20560144)

  • 21. Imino acids and collagen triple helix stability: characterization of collagen-like polypeptides containing Hyp-Hyp-Gly sequence repeats.
    Berisio R; Granata V; Vitagliano L; Zagari A
    J Am Chem Soc; 2004 Sep; 126(37):11402-3. PubMed ID: 15366862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The triple helical structure and stability of collagen model peptide with 4(S)-hydroxyprolyl-Pro-Gly units.
    Motooka D; Kawahara K; Nakamura S; Doi M; Nishi Y; Nishiuchi Y; Kang YK; Nakazawa T; Uchiyama S; Yoshida T; Ohkubo T; Kobayashi Y
    Biopolymers; 2012; 98(2):111-21. PubMed ID: 22020801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4]: implications for triple-helix hydration and Hyp(X) puckering.
    Okuyama K; Hongo C; Wu G; Mizuno K; Noguchi K; Ebisuzaki S; Tanaka Y; Nishino N; Bächinger HP
    Biopolymers; 2009 May; 91(5):361-72. PubMed ID: 19137577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical thermodynamics of the collagen triple-helix/coil transition. Free energies for amino acid substitutions within the triple-helix.
    Doig AJ
    J Phys Chem B; 2008 Nov; 112(47):15029-33. PubMed ID: 18975885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of cystine knots in collagen folding and stability, part I. Conformational properties of (Pro-Hyp-Gly)5 and (Pro-(4S)-FPro-Gly)5 model trimers with an artificial cystine knot.
    Barth D; Musiol HJ; Schütt M; Fiori S; Milbradt AG; Renner C; Moroder L
    Chemistry; 2003 Aug; 9(15):3692-702. PubMed ID: 12898696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of collagen model peptides containing 4-fluoroproline; (4(S)-fluoroproline-pro-gly)10 forms a triple helix, but (4(R)-fluoroproline-pro-gly)10 does not.
    Doi M; Nishi Y; Uchiyama S; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y
    J Am Chem Soc; 2003 Aug; 125(33):9922-3. PubMed ID: 12914445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease.
    Liu X; Kim S; Dai QH; Brodsky B; Baum J
    Biochemistry; 1998 Nov; 37(44):15528-33. PubMed ID: 9799516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Folding studies of pH-dependent collagen peptides.
    Lee J; Chmielewski J
    Chem Biol Drug Des; 2010 Feb; 75(2):161-8. PubMed ID: 20028399
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unique side chain conformation of a Leu residue in a triple-helical structure.
    Okuyama K; Narita H; Kawaguchi T; Noguchi K; Tanaka Y; Nishino N
    Biopolymers; 2007 Jun; 86(3):212-21. PubMed ID: 17373653
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations.
    Bodian DL; Madhan B; Brodsky B; Klein TE
    Biochemistry; 2008 May; 47(19):5424-32. PubMed ID: 18412368
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of cystine knots in collagen folding and stability, part II. Conformational properties of (Pro-Hyp-Gly)n model trimers with N- and C-terminal collagen type III cystine knots.
    Barth D; Kyrieleis O; Frank S; Renner C; Moroder L
    Chemistry; 2003 Aug; 9(15):3703-14. PubMed ID: 12898697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alpha-helix stabilization by alanine relative to glycine: roles of polar and apolar solvent exposures and of backbone entropy.
    López-Llano J; Campos LA; Sancho J
    Proteins; 2006 Aug; 64(3):769-78. PubMed ID: 16755589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR and CD studies of triple-helical peptides.
    Brodsky B; Li MH; Long CG; Apigo J; Baum J
    Biopolymers; 1992 Apr; 32(4):447-51. PubMed ID: 1623141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collagen-based structures containing the peptoid residue N-isobutylglycine (Nleu): synthesis and biophysical studies of Gly-Nleu-Pro sequences by circular dichroism and optical rotation.
    Feng Y; Melacini G; Goodman M
    Biochemistry; 1997 Jul; 36(29):8716-24. PubMed ID: 9220958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of tertiary amides to the conformational stability of collagen triple helices.
    Kersteen EA; Raines RT
    Biopolymers; 2001 Jul; 59(1):24-8. PubMed ID: 11343277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Two types of tripeptide conformation in collagen. Calculation of the structure of (Gly-Pro-Ser)n and (Gly-Val-Hyp)n polytripeptides].
    Abagyan RA; Tumanian VG; Esipova NG
    Bioorg Khim; 1984 Apr; 10(4):476-82. PubMed ID: 6548632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How stable is a collagen triple helix? An ab initio study on various collagen and beta-sheet forming sequences.
    Pálfi VK; Perczel A
    J Comput Chem; 2008 Jul; 29(9):1374-86. PubMed ID: 18196503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence dependence of renucleation after a Gly mutation in model collagen peptides.
    Hyde TJ; Bryan MA; Brodsky B; Baum J
    J Biol Chem; 2006 Dec; 281(48):36937-43. PubMed ID: 16998200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conformation of alloHyp in the Y position in the host-guest peptide with the pro-pro-gly sequence: implication of the destabilization of (Pro-alloHyp-Gly)10.
    Jiravanichanun N; Nishino N; Okuyama K
    Biopolymers; 2006 Feb; 81(3):225-33. PubMed ID: 16273514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.