BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 20560144)

  • 41. Electrostatic interactions involving lysine make major contributions to collagen triple-helix stability.
    Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B
    Biochemistry; 2005 Feb; 44(5):1414-22. PubMed ID: 15683226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The crystal and molecular structure of a collagen-like peptide with a biologically relevant sequence.
    Kramer RZ; Bella J; Brodsky B; Berman HM
    J Mol Biol; 2001 Aug; 311(1):131-47. PubMed ID: 11469863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of collagen-like heterotrimers: implications for triple-helix stability.
    Berisio R; Granata V; Vitagliano L; Zagari A
    Biopolymers; 2004 Apr; 73(6):682-8. PubMed ID: 15048771
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I.
    Gauba V; Hartgerink JD
    J Am Chem Soc; 2008 Jun; 130(23):7509-15. PubMed ID: 18481852
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix.
    Mizuno K; Hayashi T; Peyton DH; Bachinger HP
    J Biol Chem; 2004 Jan; 279(1):282-7. PubMed ID: 14576161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stereoelectronic and steric effects in the collagen triple helix: toward a code for strand association.
    Hodges JA; Raines RT
    J Am Chem Soc; 2005 Nov; 127(45):15923-32. PubMed ID: 16277536
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Repetitive interactions observed in the crystal structure of a collagen-model peptide, [(Pro-Pro-Gly)9]3.
    Hongo C; Noguchi K; Okuyama K; Tanaka Y; Nishino N
    J Biochem; 2005 Aug; 138(2):135-44. PubMed ID: 16091587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photocontrol of the collagen triple helix: synthesis and conformational characterization of bis-cysteinyl collagenous peptides with an azobenzene clamp.
    Kusebauch U; Cadamuro SA; Musiol HJ; Moroder L; Renner C
    Chemistry; 2007; 13(10):2966-73. PubMed ID: 17203492
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glycosylated threonine but not 4-hydroxyproline dominates the triple helix stabilizing positions in the sequence of a hydrothermal vent worm cuticle collagen.
    Mann K; Mechling DE; Bächinger HP; Eckerskorn C; Gaill F; Timpl R
    J Mol Biol; 1996 Aug; 261(2):255-66. PubMed ID: 8757292
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Is glycine a surrogate for a D-amino acid in the collagen triple helix?
    Horng JC; Kotch FW; Raines RT
    Protein Sci; 2007 Feb; 16(2):208-15. PubMed ID: 17189476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Triple-helical peptides: an approach to collagen conformation, stability, and self-association.
    Brodsky B; Thiagarajan G; Madhan B; Kar K
    Biopolymers; 2008 May; 89(5):345-53. PubMed ID: 18275087
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of deamidation on stability for the collagen to gelatin transition.
    Silva T; Kirkpatrick A; Brodsky B; Ramshaw JA
    J Agric Food Chem; 2005 Oct; 53(20):7802-6. PubMed ID: 16190633
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Natural Interruption Displays Higher Global Stability and Local Conformational Flexibility than a Similar Gly Mutation Sequence in Collagen Mimic Peptides.
    Sun X; Chai Y; Wang Q; Liu H; Wang S; Xiao J
    Biochemistry; 2015 Oct; 54(39):6106-13. PubMed ID: 26352622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of (Gly-Pro-Hyp)(9) : implications for the collagen molecular model.
    Okuyama K; Miyama K; Mizuno K; Bächinger HP
    Biopolymers; 2012 Aug; 97(8):607-16. PubMed ID: 22605552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Staggered molecular packing in crystals of a collagen-like peptide with a single charged pair.
    Kramer RZ; Venugopal MG; Bella J; Mayville P; Brodsky B; Berman HM
    J Mol Biol; 2000 Sep; 301(5):1191-205. PubMed ID: 10966815
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amino acid propensities for the collagen triple-helix.
    Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B
    Biochemistry; 2000 Dec; 39(48):14960-7. PubMed ID: 11101312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequence environment of mutation affects stability and folding in collagen model peptides of osteogenesis imperfecta.
    Bryan MA; Cheng H; Brodsky B
    Biopolymers; 2011; 96(1):4-13. PubMed ID: 20235194
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The energy of formation of internal loops in triple-helical collagen polypeptides.
    Paterlini MG; Némethy G; Scheraga HA
    Biopolymers; 1995 Jun; 35(6):607-19. PubMed ID: 7766826
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contributions of cation-π interactions to the collagen triple helix stability.
    Chen CC; Hsu W; Hwang KC; Hwu JR; Lin CC; Horng JC
    Arch Biochem Biophys; 2011 Apr; 508(1):46-53. PubMed ID: 21241657
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cyclotriveratrylene (CTV) as a new chiral triacid scaffold capable of inducing triple helix formation of collagen peptides containing either a native sequence or Pro-Hyp-Gly repeats.
    Rump ET; Rijkers DT; Hilbers HW; de Groot PG; Liskamp RM
    Chemistry; 2002 Oct; 8(20):4613-21. PubMed ID: 12362398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.