These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 20560326)
1. [Effects of exogenous salicylic acid on protein expression level in Baphicacanthus cusia (Nees) Bremek leaves]. Xiang XL; Ning SJ; Huang YL; Zhang YJ; Zhu RL; Wei DZ Ying Yong Sheng Tai Xue Bao; 2010 Mar; 21(3):689-93. PubMed ID: 20560326 [TBL] [Abstract][Full Text] [Related]
2. De novo characterization of the Baphicacanthus cusia(Nees) Bremek transcriptome and analysis of candidate genes involved in indican biosynthesis and metabolism. Lin W; Huang W; Ning S; Wang X; Ye Q; Wei D PLoS One; 2018; 13(7):e0199788. PubMed ID: 29975733 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis. Lin W; Huang W; Ning S; Gong X; Ye Q; Wei D PLoS One; 2019; 14(3):e0212863. PubMed ID: 30865659 [TBL] [Abstract][Full Text] [Related]
4. [Determination of indirubin and indigo in Baphicacanthus cusia (Nees) Bremek by HPLC]. Hou HC; Liang SZ Zhong Yao Cai; 2006 Jul; 29(7):681-2. PubMed ID: 17059007 [TBL] [Abstract][Full Text] [Related]
5. Convenient preparation of indigo from the Ieaves of Baphicacanthus cusia(Nees) Bremek by enzymatic method and its MALDI-TOF-MS and UPLC-Q-TOF/MS analysis. Chen H; Zhou H; Zhang C; Li W; Xue X; Wang C Enzyme Microb Technol; 2024 Aug; 178():110440. PubMed ID: 38574422 [TBL] [Abstract][Full Text] [Related]
6. Baphicacanthcusines A-E, Bisindole Alkaloids from the Leaves of Zhu LJ; Cao F; Su XX; Li CY; Lin B; Wang HF; Yao XS; Zhang X; Jia JM; Liu HW J Org Chem; 2020 Jul; 85(13):8580-8587. PubMed ID: 32501005 [TBL] [Abstract][Full Text] [Related]
7. Molecular cloning and metabolomic characterization of the 5-enolpyruvylshikimate-3-phosphate synthase gene from Baphicacanthus cusia. Yu J; Zhang Y; Ning S; Ye Q; Tan H; Chen R; Bu Q; Zhang R; Gong P; Ma X; Zhang L; Wei D BMC Plant Biol; 2019 Nov; 19(1):485. PubMed ID: 31706293 [TBL] [Abstract][Full Text] [Related]
8. Deciphering the bacterial composition in the rhizosphere of Baphicacanthus cusia (NeeS) Bremek. Zeng M; Zhong Y; Cai S; Diao Y Sci Rep; 2018 Oct; 8(1):15831. PubMed ID: 30361644 [TBL] [Abstract][Full Text] [Related]
9. Two New Alkaloids from the Roots of Baphicacanthus cusia. Feng QT; Zhu GY; Gao WN; Yang Z; Zhong N; Wang JR; Jiang ZH Chem Pharm Bull (Tokyo); 2016; 64(10):1505-1508. PubMed ID: 27725504 [TBL] [Abstract][Full Text] [Related]
10. [RAPD analysis on the germplasm resources of Baphicacanthus cusia]. Huang YJ; Chen JY Zhong Yao Cai; 2010 Feb; 33(2):183-6. PubMed ID: 20575408 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning and functional characterization of BcTSA in the biosynthesis of indole alkaloids in Guo Z; Chen J; Lv Z; Huang Y; Tan H; Zhang L; Diao Y Front Plant Sci; 2023; 14():1174582. PubMed ID: 37139111 [No Abstract] [Full Text] [Related]
12. Expression and Functional Study of Zeng M; Zhong Y; Guo Z; Yang H; Zhu H; Zheng L; Diao Y Front Plant Sci; 2022; 13():919071. PubMed ID: 35845683 [No Abstract] [Full Text] [Related]
13. [Effects of exogenous nitric oxide, salicylic acid and hydrogen peroxide on free amino acid and soluble protein contents in tobacco leaves]. Wei XH; Wang LM; Long RJ; Wang GX Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):257-60. PubMed ID: 16622328 [TBL] [Abstract][Full Text] [Related]
14. [Identification characters of leaf morphological and venation pattern of Baphicacanthus cusia with its confused herb Clerodendrum cyrtophyllum]. He BZ; Qin JJ; Zhu YL; Liao YK Zhong Yao Cai; 2012 Mar; 35(3):385-91. PubMed ID: 22876676 [TBL] [Abstract][Full Text] [Related]
15. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. Kang G; Li G; Xu W; Peng X; Han Q; Zhu Y; Guo T J Proteome Res; 2012 Dec; 11(12):6066-79. PubMed ID: 23101459 [TBL] [Abstract][Full Text] [Related]
16. Stable Internal Reference Genes for Normalizing Real-Time Quantitative PCR in Huang Y; Tan H; Yu J; Chen Y; Guo Z; Wang G; Zhang Q; Chen J; Zhang L; Diao Y Front Plant Sci; 2017; 8():668. PubMed ID: 28515733 [No Abstract] [Full Text] [Related]
17. [Bioinformation analysis of chorismate synthase in Baphicacantus cusia and other 78 species of plants]. Yu J; Ye Q; Ning SJ; Li Q; Tan HX; Feng JX; Chen RB; Ma XL; Gong PM; Zhao XX; Zhang L; Wei DZ Zhongguo Zhong Yao Za Zhi; 2018 Feb; 43(4):721-730. PubMed ID: 29600646 [TBL] [Abstract][Full Text] [Related]
18. Identification of Daqingye and Banlangen including crude drugs and decoction dregs from three plant species by normal light and fluorescence microscopy. Xiaojing W; Liang Z; Chen HB; Zhao Z; Li P Microsc Res Tech; 2013 Aug; 76(8):774-82. PubMed ID: 23681767 [TBL] [Abstract][Full Text] [Related]
19. Newly Identified Targets of Aspirin and Its Primary Metabolite, Salicylic Acid. Klessig DF DNA Cell Biol; 2016 Apr; 35(4):163-6. PubMed ID: 26954428 [TBL] [Abstract][Full Text] [Related]
20. [Study on the optimal extraction process of polysaccharide from Baphicacanthus cuaia (Nees) Bremek with the uniform design]. Sheng J; Li X; Chen J; Ouyang X Zhong Yao Cai; 2005 Dec; 28(12):1105-7. PubMed ID: 16568670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]