These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20560345)

  • 1. [Post-modification oxygenases in the biosynthesis of aromatic polyketides--a review].
    Ji J; Fan K; Peng X; Tian X; Dai M; Yang K
    Wei Sheng Wu Xue Bao; 2010 Apr; 50(4):444-51. PubMed ID: 20560345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analyses of oxygenases in jadomycin biosynthesis and identification of JadH as a bifunctional oxygenase/dehydrase.
    Chen YH; Wang CC; Greenwell L; Rix U; Hoffmeister D; Vining LC; Rohr J; Yang KQ
    J Biol Chem; 2005 Jun; 280(23):22508-14. PubMed ID: 15817470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oxidative ring cleavage in jadomycin biosynthesis: a multistep oxygenation cascade in a biosynthetic black box.
    Rix U; Wang C; Chen Y; Lipata FM; Remsing Rix LL; Greenwell LM; Vining LC; Yang K; Rohr J
    Chembiochem; 2005 May; 6(5):838-45. PubMed ID: 15776503
    [No Abstract]   [Full Text] [Related]  

  • 4. Expanding the scope of aromatic polyketides by combinatorial biosynthesis.
    Kantola J; Kunnari T; Mäntsälä P; Ylihonkoa K
    Comb Chem High Throughput Screen; 2003 Sep; 6(6):501-12. PubMed ID: 14529376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functional differentiation of the post-PKS tailoring oxygenases contributed to the chemical diversities of atypical angucyclines.
    Fan K; Zhang Q
    Synth Syst Biotechnol; 2018 Dec; 3(4):275-282. PubMed ID: 30533539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial biosynthesis of plant medicinal polyketides by microorganisms.
    Horinouchi S
    Curr Opin Chem Biol; 2009 Apr; 13(2):197-204. PubMed ID: 19264534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants.
    Peng RH; Xiong AS; Xue Y; Fu XY; Gao F; Zhao W; Tian YS; Yao QH
    Rev Environ Contam Toxicol; 2010; 206():65-94. PubMed ID: 20652669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo investigation of the roles of FdmM and FdmM1 in fredericamycin biosynthesis unveiling a new family of oxygenases.
    Chen Y; Wendt-Pienkoski E; Rajski SR; Shen B
    J Biol Chem; 2009 Sep; 284(37):24735-43. PubMed ID: 19620242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis.
    Julien B; Tian ZQ; Reid R; Reeves CD
    Chem Biol; 2006 Dec; 13(12):1277-86. PubMed ID: 17185223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis.
    Koskiniemi H; Metsä-Ketelä M; Dobritzsch D; Kallio P; Korhonen H; Mäntsälä P; Schneider G; Niemi J
    J Mol Biol; 2007 Sep; 372(3):633-48. PubMed ID: 17669423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust platform for de novo production of heterologous polyketides and nonribosomal peptides in Escherichia coli.
    Watanabe K; Oikawa H
    Org Biomol Chem; 2007 Feb; 5(4):593-602. PubMed ID: 17285165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Function of a C-C Bond Cleaving Oxygenase in Atypical Angucycline Biosynthesis.
    Pan G; Gao X; Fan K; Liu J; Meng B; Gao J; Wang B; Zhang C; Han H; Ai G; Chen Y; Wu D; Liu ZJ; Yang K
    ACS Chem Biol; 2017 Jan; 12(1):142-152. PubMed ID: 28103689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis.
    Pankewitz F; Hilker M
    Biol Rev Camb Philos Soc; 2008 May; 83(2):209-26. PubMed ID: 18410406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects.
    Park SR; Han AR; Ban YH; Yoo YJ; Kim EJ; Yoon YJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1227-39. PubMed ID: 19902203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial reconstruction of two cryptic angucycline antibiotic biosynthetic pathways.
    Palmu K; Ishida K; Mäntsälä P; Hertweck C; Metsä-Ketelä M
    Chembiochem; 2007 Sep; 8(13):1577-84. PubMed ID: 17654627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides.
    Yu O; Jez JM
    Plant J; 2008 May; 54(4):750-62. PubMed ID: 18476876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent strategies in biosynthesis.
    Dairi T; Kuzuyama T; Nishiyama M; Fujii I
    Nat Prod Rep; 2011 Jun; 28(6):1054-86. PubMed ID: 21547300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of polyketides by trans-AT polyketide synthases.
    Piel J
    Nat Prod Rep; 2010 Jul; 27(7):996-1047. PubMed ID: 20464003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of erythromycin C-12 hydroxylase, EryK, as a substitute for PikC hydroxylase in pikromycin biosynthesis.
    Lee SK; Basnet DB; Choi CY; Sohng JK; Ahn JS; Yoon YJ
    Bioorg Chem; 2004 Dec; 32(6):549-59. PubMed ID: 15530995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites.
    Hill AM
    Nat Prod Rep; 2006 Apr; 23(2):256-320. PubMed ID: 16572230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.