BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20560542)

  • 1. Packaging sensing cells in spores for long-term preservation of sensors: a tool for biomedical and environmental analysis.
    Date A; Pasini P; Sangal A; Daunert S
    Anal Chem; 2010 Jul; 82(14):6098-103. PubMed ID: 20560542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms.
    Date A; Pasini P; Daunert S
    Anal Bioanal Chem; 2010 Sep; 398(1):349-56. PubMed ID: 20582692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of spores for portable bacterial whole-cell biosensing systems.
    Date A; Pasini P; Daunert S
    Anal Chem; 2007 Dec; 79(24):9391-7. PubMed ID: 18020369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform.
    Rothert A; Deo SK; Millner L; Puckett LG; Madou MJ; Daunert S
    Anal Biochem; 2005 Jul; 342(1):11-9. PubMed ID: 15958175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial spores as platforms for bioanalytical and biomedical applications.
    Knecht LD; Pasini P; Daunert S
    Anal Bioanal Chem; 2011 May; 400(4):977-89. PubMed ID: 21380604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent and bioluminescent cell-based sensors: strategies for their preservation.
    Date A; Pasini P; Daunert S
    Adv Biochem Eng Biotechnol; 2010; 117():57-75. PubMed ID: 20091290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paper strip whole cell biosensors: a portable test for the semiquantitative detection of bacterial quorum signaling molecules.
    Struss A; Pasini P; Ensor CM; Raut N; Daunert S
    Anal Chem; 2010 Jun; 82(11):4457-63. PubMed ID: 20465229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxylated polychlorinated biphenyl detection based on a genetically engineered bioluminescent whole-cell sensing system.
    Turner K; Xu S; Pasini P; Deo S; Bachas L; Daunert S
    Anal Chem; 2007 Aug; 79(15):5740-5. PubMed ID: 17602671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Holographic sensors for the detection of bacterial spores.
    Bhatta D; Christie G; Madrigal-González B; Blyth J; Lowe CR
    Biosens Bioelectron; 2007 Nov; 23(4):520-7. PubMed ID: 17804215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosensing systems for the detection of bacterial quorum signaling molecules.
    Kumari A; Pasini P; Deo SK; Flomenhoft D; Shashidhar H; Daunert S
    Anal Chem; 2006 Nov; 78(22):7603-9. PubMed ID: 17105149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-automated bacterial spore detection system with micro-fluidic chips for aerosol collection, spore treatment and ICAN DNA detection.
    Inami H; Tsuge K; Matsuzawa M; Sasaki Y; Togashi S; Komano A; Seto Y
    Biosens Bioelectron; 2009 Jul; 24(11):3299-305. PubMed ID: 19450964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sposensor: a whole-bacterial biosensor that uses immobilized Bacillus subtilis spores and a one-step incubation/detection process.
    Fantino JR; Barras F; Denizot F
    J Mol Microbiol Biotechnol; 2009; 17(2):90-5. PubMed ID: 19258707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-based on-line optical analysis system for rapid detection of bacteria and spores.
    Floriano PN; Christodoulides N; Romanovicz D; Bernard B; Simmons GW; Cavell M; McDevitt JT
    Biosens Bioelectron; 2005 Apr; 20(10):2079-88. PubMed ID: 15741078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcantilever-based platforms as biosensing tools.
    Alvarez M; Lechuga LM
    Analyst; 2010 May; 135(5):827-36. PubMed ID: 20419229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence-based sensing system for copper using genetically engineered living yeast cells.
    Shetty RS; Deo SK; Liu Y; Daunert S
    Biotechnol Bioeng; 2004 Dec; 88(5):664-70. PubMed ID: 15515160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay.
    Lee KH; Su YD; Chen SJ; Tseng FG; Lee GB
    Biosens Bioelectron; 2007 Nov; 23(4):466-72. PubMed ID: 17618110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors involved in the germination and inactivation of Bacillus anthracis spores in murine primary macrophages.
    Hu H; Emerson J; Aronson AI
    FEMS Microbiol Lett; 2007 Jul; 272(2):245-50. PubMed ID: 17521404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical detection of germination of viable model Bacillus anthracis spores in microfluidic biochips.
    Liu YS; Walter TM; Chang WJ; Lim KS; Yang L; Lee SW; Aronson A; Bashir R
    Lab Chip; 2007 May; 7(5):603-10. PubMed ID: 17476379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples.
    Buffi N; Merulla D; Beutier J; Barbaud F; Beggah S; van Lintel H; Renaud P; van der Meer JR
    Lab Chip; 2011 Jul; 11(14):2369-77. PubMed ID: 21614381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic platforms based on surface-enhanced Raman scattering.
    Lim C; Hong J; Chung BG; deMello AJ; Choo J
    Analyst; 2010 May; 135(5):837-44. PubMed ID: 20419230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.