BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20560636)

  • 1. Toward homogeneous erythropoietin: fine tuning of the C-terminal acyl donor in the chemical synthesis of the Cys29-Gly77 glycopeptide domain.
    Yuan Y; Chen J; Wan Q; Tan Z; Chen G; Kan C; Danishefsky SJ
    J Am Chem Soc; 2009 Apr; 131(15):5432-7. PubMed ID: 20560636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward homogeneous erythropoietin: chemical synthesis of the Ala1-Gly28 glycopeptide domain by "alanine" ligation.
    Kan C; Trzupek JD; Wu B; Wan Q; Chen G; Tan Z; Yuan Y; Danishefsky SJ
    J Am Chem Soc; 2009 Apr; 131(15):5438-43. PubMed ID: 19334679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward homogeneous erythropoietin: non-NCL-based chemical synthesis of the Gln78-Arg166 glycopeptide domain.
    Tan Z; Shang S; Halkina T; Yuan Y; Danishefsky SJ
    J Am Chem Soc; 2009 Apr; 131(15):5424-31. PubMed ID: 19334683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total synthesis of erythropoietin through the development and exploitation of enabling synthetic technologies.
    Payne RJ
    Angew Chem Int Ed Engl; 2013 Jan; 52(2):505-7. PubMed ID: 23180667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subtilisin-catalyzed glycopeptide condensation.
    Tolbert TJ; Wong CH
    Methods Mol Biol; 2004; 283():267-79. PubMed ID: 15197318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical synthesis of erythropoietin glycoforms for insights into the relationship between glycosylation pattern and bioactivity.
    Murakami M; Kiuchi T; Nishihara M; Tezuka K; Okamoto R; Izumi M; Kajihara Y
    Sci Adv; 2016 Jan; 2(1):e1500678. PubMed ID: 26824070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoenzymatic Synthesis of HIV-1 Glycopeptide Antigens.
    Zong G; Li C; Wang LX
    Methods Mol Biol; 2020; 2103():249-262. PubMed ID: 31879931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new strategy for stereoselective synthesis of sialic acid-containing glycopeptide fragment.
    Wang ZG; Zhang XF; Ito Y; Nakahara Y; Ogawa T
    Bioorg Med Chem; 1996 Nov; 4(11):1901-8. PubMed ID: 9007274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient substitution reaction from cysteine to the serine residue of glycosylated polypeptide: repetitive peptide segment ligation strategy and the synthesis of glycosylated tetracontapeptide having acid labile sialyl-T(N) antigens.
    Okamoto R; Souma S; Kajihara Y
    J Org Chem; 2009 Mar; 74(6):2494-501. PubMed ID: 19236026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward fully synthetic glycoproteins by ultimately convergent routes: a solution to a long-standing problem.
    Warren JD; Miller JS; Keding SJ; Danishefsky SJ
    J Am Chem Soc; 2004 Jun; 126(21):6576-8. PubMed ID: 15161285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-phase synthesis of peptide and glycopeptide thioesters through side-chain-anchoring strategies.
    Ficht S; Payne RJ; Guy RT; Wong CH
    Chemistry; 2008; 14(12):3620-9. PubMed ID: 18278777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical synthesis of homogeneous glycopeptides and glycoproteins.
    Kajihara Y; Yamamoto N; Okamoto R; Hirano K; Murase T
    Chem Rec; 2010 Apr; 10(2):80-100. PubMed ID: 20349507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convenient synthesis of a sialylglycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide.
    Kajihara Y; Yoshihara A; Hirano K; Yamamoto N
    Carbohydr Res; 2006 Jul; 341(10):1333-40. PubMed ID: 16701588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering a latent ligation site for glycopeptide synthesis.
    Okamoto R; Kajihara Y
    Angew Chem Int Ed Engl; 2008; 47(29):5402-6. PubMed ID: 18548471
    [No Abstract]   [Full Text] [Related]  

  • 15. Glycopeptide and glycoprotein synthesis involving unprotected carbohydrate building blocks.
    Guo Z; Shao N
    Med Res Rev; 2005 Nov; 25(6):655-78. PubMed ID: 15895471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel synthesis of functional mucin glycopeptides containing both N- and O-glycans.
    Matsushita T; Nishimura S
    Methods Enzymol; 2010; 478():485-502. PubMed ID: 20816495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical synthesis of syndecan-3 glycopeptides bearing two heparan sulfate glycan chains.
    Yoshida K; Yang B; Yang W; Zhang Z; Zhang J; Huang X
    Angew Chem Int Ed Engl; 2014 Aug; 53(34):9051-8. PubMed ID: 24981920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic glycopeptides and glycoproteins with applications in biological research.
    Westerlind U
    Beilstein J Org Chem; 2012; 8():804-18. PubMed ID: 23015828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of small glycopeptides by decarboxylative condensation and insight into the reaction mechanism.
    Sanki AK; Talan RS; Sucheck SJ
    J Org Chem; 2009 Mar; 74(5):1886-96. PubMed ID: 19182928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple complexes of long aliphatic N-acyltransferases lead to synthesis of 2,6-diacylated/2-acyl-substituted glycopeptide antibiotics, effectively killing vancomycin-resistant enterococcus.
    Lyu SY; Liu YC; Chang CY; Huang CJ; Chiu YH; Huang CM; Hsu NS; Lin KH; Wu CJ; Tsai MD; Li TL
    J Am Chem Soc; 2014 Aug; 136(31):10989-95. PubMed ID: 25095906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.