These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 20560759)
1. An efficient algorithm for computing hypervolume contributions. Bringmann K; Friedrich T Evol Comput; 2010; 18(3):383-402. PubMed ID: 20560759 [TBL] [Abstract][Full Text] [Related]
2. HypE: an algorithm for fast hypervolume-based many-objective optimization. Bader J; Zitzler E Evol Comput; 2011; 19(1):45-76. PubMed ID: 20649424 [TBL] [Abstract][Full Text] [Related]
3. S-Metric calculation by considering dominated hypervolume as Klee's measure problem. Beume N Evol Comput; 2009; 17(4):477-92. PubMed ID: 19916778 [TBL] [Abstract][Full Text] [Related]
4. A Simple and Fast Hypervolume Indicator-Based Multiobjective Evolutionary Algorithm. Jiang S; Zhang J; Ong YS; Zhang AN; Tan PS IEEE Trans Cybern; 2015 Oct; 45(10):2202-13. PubMed ID: 25474815 [TBL] [Abstract][Full Text] [Related]
5. A new evolutionary algorithm for solving many-objective optimization problems. Zou X; Chen Y; Liu M; Kang L IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020 [TBL] [Abstract][Full Text] [Related]
6. How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison. Ishibuchi H; Imada R; Setoguchi Y; Nojima Y Evol Comput; 2018; 26(3):411-440. PubMed ID: 29786458 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the epsilon-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Deb K; Mohan M; Mishra S Evol Comput; 2005; 13(4):501-25. PubMed ID: 16297281 [TBL] [Abstract][Full Text] [Related]
8. An efficient non-dominated sorting method for evolutionary algorithms. Fang H; Wang Q; Tu YC; Horstemeyer MF Evol Comput; 2008; 16(3):355-84. PubMed ID: 18811246 [TBL] [Abstract][Full Text] [Related]
9. Multiplicative approximations, optimal hypervolume distributions, and the choice of the reference point. Friedrich T; Neumann F; Thyssen C Evol Comput; 2015; 23(1):131-59. PubMed ID: 24654679 [TBL] [Abstract][Full Text] [Related]
10. Hypervolume Subset Selection with Small Subsets. Groz B; Maniu S Evol Comput; 2019; 27(4):611-637. PubMed ID: 30365385 [TBL] [Abstract][Full Text] [Related]
14. An algorithm to compute optimal genetic contributions in selection programs with large numbers of candidates. Hinrichs D; Wetten M; Meuwissen TH J Anim Sci; 2006 Dec; 84(12):3212-8. PubMed ID: 17093213 [TBL] [Abstract][Full Text] [Related]
15. An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm. Deb K; Sinha A Evol Comput; 2010; 18(3):403-49. PubMed ID: 20560758 [TBL] [Abstract][Full Text] [Related]
16. An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints. Zeng SY; Kang LS; Ding LX Evol Comput; 2004; 12(1):77-98. PubMed ID: 15096306 [TBL] [Abstract][Full Text] [Related]
17. Maximizing Submodular Functions under Matroid Constraints by Evolutionary Algorithms. Friedrich T; Neumann F Evol Comput; 2015; 23(4):543-58. PubMed ID: 26135719 [TBL] [Abstract][Full Text] [Related]
18. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding. Guturu P; Dantu R IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):645-66. PubMed ID: 18558530 [TBL] [Abstract][Full Text] [Related]
19. Combining convergence and diversity in evolutionary multiobjective optimization. Laumanns M; Thiele L; Deb K; Zitzler E Evol Comput; 2002; 10(3):263-82. PubMed ID: 12227996 [TBL] [Abstract][Full Text] [Related]
20. The Set-Based Hypervolume Newton Method for Bi-Objective Optimization. Sosa Hernandez VA; Schutze O; Wang H; Deutz A; Emmerich M IEEE Trans Cybern; 2020 May; 50(5):2186-2196. PubMed ID: 30596593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]