BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 20561019)

  • 1. Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments.
    Bertics VJ; Ziebis W
    Environ Microbiol; 2010 Nov; 12(11):3022-34. PubMed ID: 20561019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches.
    Bertics VJ; Ziebis W
    ISME J; 2009 Nov; 3(11):1269-85. PubMed ID: 19458658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioturbation: impact on the marine nitrogen cycle.
    Laverock B; Gilbert JA; Tait K; Osborn AM; Widdicombe S
    Biochem Soc Trans; 2011 Jan; 39(1):315-20. PubMed ID: 21265795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic activity of subsurface life in deep-sea sediments.
    D'Hondt S; Rutherford S; Spivack AJ
    Science; 2002 Mar; 295(5562):2067-70. PubMed ID: 11896277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denitrification and nitrogen fixation dynamics in the area surrounding an individual ghost shrimp (Neotrypaea californiensis) burrow system.
    Bertics VJ; Sohm JA; Magnabosco C; Ziebis W
    Appl Environ Microbiol; 2012 Jun; 78(11):3864-72. PubMed ID: 22447588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B; Samarkin V; Boetius A; Joye S
    Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Microbiological and biogeochemical processes in a pockmark of the Gdansk depression, Baltic Sea].
    Pimenov NV; Ul'ianova MO; Kanapatski TA; Sivkov VV; Ivanov MV
    Mikrobiologiia; 2008; 77(5):651-9. PubMed ID: 19004347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Microbial sulfate reduction in sediments of the coastal zone and littoral of the Kandalaksha bay of the White sea].
    Savvichev AS; Rusanov II; Iusupov SK; Baĭramov IT; Pimenov NV; Lein AIu; Ivanov MV
    Mikrobiologiia; 2003; 72(4):535-46. PubMed ID: 14526546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate.
    Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F
    Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea].
    Pimenov NV; Ivanova AE
    Mikrobiologiia; 2005; 74(3):420-9. PubMed ID: 16119857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments.
    Laverock B; Smith CJ; Tait K; Osborn AM; Widdicombe S; Gilbert JA
    ISME J; 2010 Dec; 4(12):1531-44. PubMed ID: 20596074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth Distribution and Assembly of Sulfate-Reducing Microbial Communities in Marine Sediments of Aarhus Bay.
    Jochum LM; Chen X; Lever MA; Loy A; Jørgensen BB; Schramm A; Kjeldsen KU
    Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28939599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis.
    Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M
    Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters.
    Colin Y; Goñi-Urriza M; Gassie C; Carlier E; Monperrus M; Guyoneaud R
    Microb Ecol; 2017 Jan; 73(1):39-49. PubMed ID: 27581035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments.
    Finke N; Jørgensen BB
    ISME J; 2008 Aug; 2(8):815-29. PubMed ID: 18309360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of petroleum hydrocarbons in anoxic marine sediments: consequences on the speciation of heavy metals.
    Dell'Anno A; Beolchini F; Gabellini M; Rocchetti L; Pusceddu A; Danovaro R
    Mar Pollut Bull; 2009 Dec; 58(12):1808-14. PubMed ID: 19740495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments.
    Robador A; Brüchert V; Jørgensen BB
    Environ Microbiol; 2009 Jul; 11(7):1692-703. PubMed ID: 19292778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microbiological decomposition of organic matter in the bottom sediments of Lithuanian lakes].
    Krevs A; Kucinskiene A; Paskauskas R
    Mikrobiologiia; 2006; 75(2):257-63. PubMed ID: 16758875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark).
    Parkes RJ; Cragg BA; Banning N; Brock F; Webster G; Fry JC; Hornibrook E; Pancost RD; Kelly S; Knab N; Jørgensen BB; Rinna J; Weightman AJ
    Environ Microbiol; 2007 May; 9(5):1146-61. PubMed ID: 17472631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.