These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 20561196)
1. Population differentiation of sessile oak at the altitudinal front of migration in the French Pyrenees. Alberto F; Niort J; Derory J; Lepais O; Vitalis R; Galop D; Kremer A Mol Ecol; 2010 Jul; 19(13):2626-39. PubMed ID: 20561196 [TBL] [Abstract][Full Text] [Related]
2. Evidence for shared ancestral polymorphism rather than recurrent gene flow at microsatellite loci differentiating two hybridizing oaks (Quercus spp.). Muir G; Schlötterer C Mol Ecol; 2005 Feb; 14(2):549-61. PubMed ID: 15660945 [TBL] [Abstract][Full Text] [Related]
3. Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting. Salvini D; Bruschi P; Fineschi S; Grossoni P; Kjaer ED; Vendramin GG Plant Biol (Stuttg); 2009 Sep; 11(5):758-65. PubMed ID: 19689784 [TBL] [Abstract][Full Text] [Related]
4. Chloroplast DNA variation in the Quercus affinis-Q. laurina complex in Mexico: geographical structure and associations with nuclear and morphological variation. González-Rodríguez A; Bain JF; Golden JL; Oyama K Mol Ecol; 2004 Nov; 13(11):3467-76. PubMed ID: 15488004 [TBL] [Abstract][Full Text] [Related]
5. Genetic variation of oaks ( Quercus spp.) in Switzerland. 3. Lack of impact of postglacial recolonization history on nuclear gene loci. Finkeldey R; Mátyás G Theor Appl Genet; 2003 Jan; 106(2):346-52. PubMed ID: 12582862 [TBL] [Abstract][Full Text] [Related]
6. Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. Alberto F; Bouffier L; Louvet JM; Lamy JB; Delzon S; Kremer A J Evol Biol; 2011 Jul; 24(7):1442-54. PubMed ID: 21507119 [TBL] [Abstract][Full Text] [Related]
7. Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Sork VL; Davis FW; Westfall R; Flint A; Ikegami M; Wang H; Grivet D Mol Ecol; 2010 Sep; 19(17):3806-23. PubMed ID: 20723054 [TBL] [Abstract][Full Text] [Related]
8. Conserving the evolutionary potential of California valley oak (Quercus lobata Née): a multivariate genetic approach to conservation planning. Grivet D; Sork VL; Westfall RD; Davis FW Mol Ecol; 2008 Jan; 17(1):139-56. PubMed ID: 17868293 [TBL] [Abstract][Full Text] [Related]
9. Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née. Gugger PF; Ikegami M; Sork VL Mol Ecol; 2013 Jul; 22(13):3598-612. PubMed ID: 23802553 [TBL] [Abstract][Full Text] [Related]
10. Realized gene flow within mixed stands of Quercus robur L. and Q. petraea (Matt.) L. revealed at the stage of naturally established seedling. Chybicki IJ; Burczyk J Mol Ecol; 2010 May; 19(10):2137-51. PubMed ID: 20550635 [TBL] [Abstract][Full Text] [Related]
11. Characterisation and natural variation of a dehydrin gene in Quercus petraea (Matt.) Liebl. Vornam B; Gailing O; Derory J; Plomion C; Kremer A; Finkeldey R Plant Biol (Stuttg); 2011 Nov; 13(6):881-7. PubMed ID: 21973280 [TBL] [Abstract][Full Text] [Related]
12. Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Curtu AL; Gailing O; Leinemann L; Finkeldey R Plant Biol (Stuttg); 2007 Jan; 9(1):116-26. PubMed ID: 17048143 [TBL] [Abstract][Full Text] [Related]
13. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers. Du FK; Petit RJ; Liu JQ Mol Ecol; 2009 Apr; 18(7):1396-407. PubMed ID: 19284474 [TBL] [Abstract][Full Text] [Related]
14. Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Grivet D; Deguilloux MF; Petit RJ; Sork VL Mol Ecol; 2006 Nov; 15(13):4085-93. PubMed ID: 17054504 [TBL] [Abstract][Full Text] [Related]
15. Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Ortego J; Riordan EC; Gugger PF; Sork VL Mol Ecol; 2012 Jul; 21(13):3210-23. PubMed ID: 22548448 [TBL] [Abstract][Full Text] [Related]
16. Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation. Zeng YF; Liao WJ; Petit RJ; Zhang DY Mol Ecol; 2011 Dec; 20(23):4995-5011. PubMed ID: 22059561 [TBL] [Abstract][Full Text] [Related]
17. The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Giordano AR; Ridenhour BJ; Storfer A Mol Ecol; 2007 Apr; 16(8):1625-37. PubMed ID: 17402978 [TBL] [Abstract][Full Text] [Related]
18. [Genetic differentiation of pedunculate oak Quercus robur L. in the European part of Russia based on RAPD markers]. Iakovlev IA; Kleinschmidt J Genetika; 2002 Feb; 38(2):207-15. PubMed ID: 11898612 [TBL] [Abstract][Full Text] [Related]
19. Population structure and genetic diversity in tristylous Narcissus triandrus: insights from microsatellite and chloroplast DNA variation. Hodgins KA; Barrett SC Mol Ecol; 2007 Jun; 16(11):2317-32. PubMed ID: 17561893 [TBL] [Abstract][Full Text] [Related]
20. Nuclear and chloroplast microsatellites reveal extreme population differentiation and limited gene flow in the Aegean endemic Brassica cretica (Brassicaceae). Edh K; Widén B; Ceplitis A Mol Ecol; 2007 Dec; 16(23):4972-83. PubMed ID: 17956541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]