BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20561250)

  • 1. Can the progressive increase of C₄ bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration?
    Kromdijk J; Griffiths H; Schepers HE
    Plant Cell Environ; 2010 Nov; 33(11):1935-48. PubMed ID: 20561250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between quantum yield for CO2 assimilation, activity of key enzymes and CO2 leakiness in Amaranthus cruentus, a C4 dicot, grown in high or low light.
    Tazoe Y; Hanba YT; Furumoto T; Noguchi K; Terashima I
    Plant Cell Physiol; 2008 Jan; 49(1):19-29. PubMed ID: 18032398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The efficiency of C(4) photosynthesis under low light conditions: assumptions and calculations with CO(2) isotope discrimination.
    Ubierna N; Sun W; Cousins AB
    J Exp Bot; 2011 May; 62(9):3119-34. PubMed ID: 21527629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acclimation to low light by C4 maize: implications for bundle sheath leakiness.
    Bellasio C; Griffiths H
    Plant Cell Environ; 2014 May; 37(5):1046-58. PubMed ID: 24004447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion.
    Priault P; Tcherkez G; Cornic G; De Paepe R; Naik R; Ghashghaie J; Streb P
    J Exp Bot; 2006; 57(12):3195-207. PubMed ID: 16945981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using a biochemical C4 photosynthesis model and combined gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content.
    Yin X; Sun Z; Struik PC; Van der Putten PE; Van Ieperen W; Harbinson J
    Plant Cell Environ; 2011 Dec; 34(12):2183-99. PubMed ID: 21883288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy.
    Yin X; Struik PC; Romero P; Harbinson J; Evers JB; VAN DER Putten PE; Vos J
    Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus×giganteus: changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism.
    Sun W; Ubierna N; Ma JY; Cousins AB
    Plant Cell Environ; 2012 May; 35(5):982-93. PubMed ID: 22082455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The efficiency of C4 photosynthesis under low light conditions in Zea mays, Miscanthus x giganteus and Flaveria bidentis.
    Ubierna N; Sun W; Kramer DM; Cousins AB
    Plant Cell Environ; 2013 Feb; 36(2):365-81. PubMed ID: 22812384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedforward non-Michaelis-Menten mechanism for CO(2) uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation.
    Igamberdiev AU; Roussel MR
    Biosystems; 2012 Mar; 107(3):158-66. PubMed ID: 22154946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation.
    Kromdijk J; Ubierna N; Cousins AB; Griffiths H
    J Exp Bot; 2014 Jul; 65(13):3443-57. PubMed ID: 24755278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and mechanisms of oscillatory photosynthesis.
    Roussel MR; Igamberdiev AU
    Biosystems; 2011 Feb; 103(2):230-8. PubMed ID: 20739004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling ¹⁸O₂ and ¹⁶O₂ unidirectional fluxes in plants: II. analysis of rubisco evolution.
    André MJ
    Biosystems; 2011 Feb; 103(2):252-64. PubMed ID: 20950670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of the oscillatory dynamics in the processes of CO₂ assimilation and photorespiration.
    Dubinsky AY; Ivlev AA
    Biosystems; 2011 Feb; 103(2):285-90. PubMed ID: 21078363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy.
    Bellasio C; Griffiths H
    J Exp Bot; 2014 Jul; 65(13):3725-36. PubMed ID: 24591058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bundle sheath diffusive resistance to CO(2) and effectiveness of C(4) photosynthesis and refixation of photorespired CO(2) in a C(4) cycle mutant and wild-type Amaranthus edulis.
    Kiirats O; Lea PJ; Franceschi VR; Edwards GE
    Plant Physiol; 2002 Oct; 130(2):964-76. PubMed ID: 12376660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photorespiratory compensation: a driver for biological diversity.
    Sage RF
    Plant Biol (Stuttg); 2013 Jul; 15(4):624-38. PubMed ID: 23656429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2.
    Busch FA; Sage TL; Cousins AB; Sage RF
    Plant Cell Environ; 2013 Jan; 36(1):200-12. PubMed ID: 22734462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis?
    Sage RF; McKown AD
    J Exp Bot; 2006; 57(2):303-17. PubMed ID: 16364950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco.
    von Caemmerer S; Lawson T; Oxborough K; Baker NR; Andrews TJ; Raines CA
    J Exp Bot; 2004 May; 55(400):1157-66. PubMed ID: 15107451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.