These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 20561602)
1. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Melchels FP; Barradas AM; van Blitterswijk CA; de Boer J; Feijen J; Grijpma DW Acta Biomater; 2010 Nov; 6(11):4208-17. PubMed ID: 20561602 [TBL] [Abstract][Full Text] [Related]
2. Scaffolds for tissue engineering and 3D cell culture. Carletti E; Motta A; Migliaresi C Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963 [TBL] [Abstract][Full Text] [Related]
3. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Melchels FP; Tonnarelli B; Olivares AL; Martin I; Lacroix D; Feijen J; Wendt DJ; Grijpma DW Biomaterials; 2011 Apr; 32(11):2878-84. PubMed ID: 21288567 [TBL] [Abstract][Full Text] [Related]
4. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539 [TBL] [Abstract][Full Text] [Related]
5. The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells. Wang H; van Blitterswijk CA Biomaterials; 2010 May; 31(15):4322-9. PubMed ID: 20199809 [TBL] [Abstract][Full Text] [Related]
6. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942 [TBL] [Abstract][Full Text] [Related]
8. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro]. Li X; Li DC; Wang L; Lu BH; Wang Z Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096 [TBL] [Abstract][Full Text] [Related]
9. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. Shimizu K; Ito A; Honda H J Biosci Bioeng; 2007 Sep; 104(3):171-7. PubMed ID: 17964479 [TBL] [Abstract][Full Text] [Related]
10. Effect of scaffold architecture and pore size on smooth muscle cell growth. Lee M; Wu BM; Dunn JC J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Sobral JM; Caridade SG; Sousa RA; Mano JF; Reis RL Acta Biomater; 2011 Mar; 7(3):1009-18. PubMed ID: 21056125 [TBL] [Abstract][Full Text] [Related]
12. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520 [TBL] [Abstract][Full Text] [Related]
13. Synthetic scaffold morphology controls human dermal connective tissue formation. Wang H; Pieper J; Péters F; van Blitterswijk CA; Lamme EN J Biomed Mater Res A; 2005 Sep; 74(4):523-32. PubMed ID: 16028236 [TBL] [Abstract][Full Text] [Related]
14. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Van Bael S; Chai YC; Truscello S; Moesen M; Kerckhofs G; Van Oosterwyck H; Kruth JP; Schrooten J Acta Biomater; 2012 Jul; 8(7):2824-34. PubMed ID: 22487930 [TBL] [Abstract][Full Text] [Related]
15. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005 [TBL] [Abstract][Full Text] [Related]
16. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering]. Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722 [TBL] [Abstract][Full Text] [Related]
17. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
18. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Murphy CM; Haugh MG; O'Brien FJ Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008 [TBL] [Abstract][Full Text] [Related]
19. Enhancing annulus fibrosus tissue formation in porous silk scaffolds. Chang G; Kim HJ; Vunjak-Novakovic G; Kaplan DL; Kandel R J Biomed Mater Res A; 2010 Jan; 92(1):43-51. PubMed ID: 19165797 [TBL] [Abstract][Full Text] [Related]
20. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]