These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20561794)

  • 1. Specimen preparation for electron diffraction of thin crystals.
    Wang H; Downing KH
    Micron; 2011 Feb; 42(2):132-40. PubMed ID: 20561794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grid preparation for cryo-electron microscopy.
    Gyobu N
    Methods Mol Biol; 2013; 955():119-28. PubMed ID: 23132058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryo-electron microscopy of membrane proteins.
    Goldie KN; Abeyrathne P; Kebbel F; Chami M; Ringler P; Stahlberg H
    Methods Mol Biol; 2014; 1117():325-41. PubMed ID: 24357370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial energies and surface-tension forces involved in the preparation of thin, flat crystals of biological macromolecules for high-resolution electron microscopy.
    Glaeser RM; Zilker A; Radermacher M; Gaub HE; Hartmann T; Baumeister W
    J Microsc; 1991 Jan; 161(Pt 1):21-45. PubMed ID: 2016735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals.
    Xu H; Lebrette H; Yang T; Srinivas V; Hovmöller S; Högbom M; Zou X
    Structure; 2018 Apr; 26(4):667-675.e3. PubMed ID: 29551291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specimen flatness of thin crystalline arrays: influence of the substrate.
    Glaeser RM
    Ultramicroscopy; 1992 Oct; 46(1-4):33-43. PubMed ID: 1481276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron crystallography of membrane proteins.
    Chou HT; Evans JE; Stahlberg H
    Methods Mol Biol; 2007; 369():331-43. PubMed ID: 17656758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of electron crystallographic data obtained from two-dimensional crystals of biological specimens.
    Unger VM
    Acta Crystallogr D Biol Crystallogr; 2000 Oct; 56(Pt 10):1259-69. PubMed ID: 10998622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collecting electron crystallographic data of two-dimensional protein crystals.
    Hite RK; Schenk AD; Li Z; Cheng Y; Walz T
    Methods Enzymol; 2010; 481():251-82. PubMed ID: 20887861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroED Sample Preparation and Data Collection For Protein Crystals.
    Bu G; Nannenga BL
    Methods Mol Biol; 2021; 2215():287-297. PubMed ID: 33368009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved specimen preparation for cryo-electron microscopy using a symmetric carbon sandwich technique.
    Gyobu N; Tani K; Hiroaki Y; Kamegawa A; Mitsuoka K; Fujiyoshi Y
    J Struct Biol; 2004 Jun; 146(3):325-33. PubMed ID: 15099574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional electron crystallography of protein microcrystals.
    Shi D; Nannenga BL; Iadanza MG; Gonen T
    Elife; 2013 Nov; 2():e01345. PubMed ID: 24252878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Resolution Electron Diffraction of Hydrated Protein Crystals at Room Temperature.
    Plana-Ruiz S; Gómez-Pérez A; Budayova-Spano M; Foley DL; Portillo-Serra J; Rauch E; Grivas E; Housset D; Das PP; Taheri ML; Nicolopoulos S; Ling WL
    ACS Nano; 2023 Dec; 17(24):24802-24813. PubMed ID: 37890869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sample Preparation and Data Collection for Electron Crystallographic Studies on Membrane Protein Structures and Lipid-Protein Interaction.
    Chan KY; Du Truong C; Poh YP; Chiu PL
    Methods Mol Biol; 2021; 2215():247-265. PubMed ID: 33368007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-negative staining.
    Adrian M; Dubochet J; Fuller SD; Harris JR
    Micron; 1998; 29(2-3):145-60. PubMed ID: 9684350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional crystals of Ca2+-ATPase from sarcoplasmic reticulum: merging electron diffraction tilt series and imaging the (h, k, 0) projection.
    Shi D; Lewis MR; Young HS; Stokes DL
    J Mol Biol; 1998 Dec; 284(5):1547-64. PubMed ID: 9878370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of wet specimens in electron microscopy. Improved environmental chambers make it possible to examine wet specimens easily.
    Parsons DF
    Science; 1974 Nov; 186(4162):407-14. PubMed ID: 4213401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and analysis of large, flat crystals of Ca(2+)-ATPase for electron crystallography.
    Shi D; Hsiung HH; Pace RC; Stokes DL
    Biophys J; 1995 Mar; 68(3):1152-62. PubMed ID: 7756535
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.