BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20561808)

  • 1. Hypothalamic integration of portal glucose signals and control of food intake and insulin sensitivity.
    Delaere F; Magnan C; Mithieux G
    Diabetes Metab; 2010 Sep; 36(4):257-62. PubMed ID: 20561808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Glucose sensing: from gut to brain].
    Mithieux G
    Bull Acad Natl Med; 2007; 191(4-5):911-20; discussion 920-1. PubMed ID: 18225445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein.
    Mithieux G; Misery P; Magnan C; Pillot B; Gautier-Stein A; Bernard C; Rajas F; Zitoun C
    Cell Metab; 2005 Nov; 2(5):321-9. PubMed ID: 16271532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic effects of portal vein sensing.
    Mithieux G
    Diabetes Obes Metab; 2014 Sep; 16 Suppl 1():56-60. PubMed ID: 25200297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice.
    Troy S; Soty M; Ribeiro L; Laval L; Migrenne S; Fioramonti X; Pillot B; Fauveau V; Aubert R; Viollet B; Foretz M; Leclerc J; Duchampt A; Zitoun C; Thorens B; Magnan C; Mithieux G; Andreelli F
    Cell Metab; 2008 Sep; 8(3):201-11. PubMed ID: 18762021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis.
    Mithieux G
    Nutrition; 2009 Sep; 25(9):881-4. PubMed ID: 19647621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain, liver, intestine: a triumvirate to coordinate insulin sensitivity of endogenous glucose production.
    Mithieux G
    Diabetes Metab; 2010 Oct; 36 Suppl 3():S50-3. PubMed ID: 21211736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-induced satiety is abolished in the absence of intestinal gluconeogenesis.
    Penhoat A; Mutel E; Amigo-Correig M; Pillot B; Stefanutti A; Rajas F; Mithieux G
    Physiol Behav; 2011 Nov; 105(1):89-93. PubMed ID: 21402089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of diabetes surgery on a gut-brain-liver axis regulating food intake and internal glucose production.
    Mithieux G
    Nutr Hosp; 2013 Mar; 28 Suppl 2():109-14. PubMed ID: 23834054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosstalk between gastrointestinal neurons and the brain in the control of food intake.
    Mithieux G
    Best Pract Res Clin Endocrinol Metab; 2014 Oct; 28(5):739-44. PubMed ID: 25256768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis.
    Mithieux G; Andreelli F; Magnan C
    Curr Opin Clin Nutr Metab Care; 2009 Jul; 12(4):419-23. PubMed ID: 19474723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose sensing and the pathogenesis of obesity and type 2 diabetes.
    Thorens B
    Int J Obes (Lond); 2008 Dec; 32 Suppl 6():S62-71. PubMed ID: 19079282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut-brain axis.
    Romijn JA; Corssmit EP; Havekes LM; Pijl H
    Curr Opin Clin Nutr Metab Care; 2008 Jul; 11(4):518-21. PubMed ID: 18542016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gut-brain axis: regulation of glucose metabolism.
    Heijboer AC; Pijl H; Van den Hoek AM; Havekes LM; Romijn JA; Corssmit EP
    J Neuroendocrinol; 2006 Dec; 18(12):883-94. PubMed ID: 17076764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake.
    Duraffourd C; De Vadder F; Goncalves D; Delaere F; Penhoat A; Brusset B; Rajas F; Chassard D; Duchampt A; Stefanutti A; Gautier-Stein A; Mithieux G
    Cell; 2012 Jul; 150(2):377-88. PubMed ID: 22771138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects.
    Gastaldelli A; Cusi K; Pettiti M; Hardies J; Miyazaki Y; Berria R; Buzzigoli E; Sironi AM; Cersosimo E; Ferrannini E; Defronzo RA
    Gastroenterology; 2007 Aug; 133(2):496-506. PubMed ID: 17681171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The selfish brain: competition for energy resources.
    Fehm HL; Kern W; Peters A
    Prog Brain Res; 2006; 153():129-40. PubMed ID: 16876572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient control of energy homeostasis via gut-brain neural circuits.
    Mithieux G
    Neuroendocrinology; 2014; 100(2-3):89-94. PubMed ID: 25342450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural regulation of glucose homeostasis.
    Kumar VM
    Indian J Physiol Pharmacol; 1999 Oct; 43(4):415-24. PubMed ID: 10776456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of hypothalamic endocannabinoid levels by neuropeptides and hormones involved in food intake and metabolism: insulin and melanocortins.
    Matias I; Vergoni AV; Petrosino S; Ottani A; Pocai A; Bertolini A; Di Marzo V
    Neuropharmacology; 2008 Jan; 54(1):206-12. PubMed ID: 17675101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.