These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 20561955)

  • 41. The activation of attentional networks.
    Fan J; McCandliss BD; Fossella J; Flombaum JI; Posner MI
    Neuroimage; 2005 Jun; 26(2):471-9. PubMed ID: 15907304
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modulation of specific brain activity by the perceptual analysis of very subtle geometrical relationships of the Mangina-Test stimuli: a functional magnetic resonance imaging (fMRI) investigation in young healthy adults.
    Mangina CA; Beuzeron-Mangina H; Casarotto S; Chiarenza GA; Pietrini P; Ricciardi E
    Int J Psychophysiol; 2009 Aug; 73(2):157-63. PubMed ID: 19414049
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of attention and arousal on early responses in striate cortex.
    Poghosyan V; Shibata T; Ioannides AA
    Eur J Neurosci; 2005 Jul; 22(1):225-34. PubMed ID: 16029212
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional magnetic resonance imaging of working memory among multiple sclerosis patients.
    Sweet LH; Rao SM; Primeau M; Mayer AR; Cohen RA
    J Neuroimaging; 2004 Apr; 14(2):150-7. PubMed ID: 15095561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks.
    Rubia K; Russell T; Overmeyer S; Brammer MJ; Bullmore ET; Sharma T; Simmons A; Williams SC; Giampietro V; Andrew CM; Taylor E
    Neuroimage; 2001 Feb; 13(2):250-61. PubMed ID: 11162266
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural correlates of change detection and change blindness in a working memory task.
    Pessoa L; Ungerleider LG
    Cereb Cortex; 2004 May; 14(5):511-20. PubMed ID: 15054067
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phasic alerting effects on visual processing speed are associated with intrinsic functional connectivity in the cingulo-opercular network.
    Haupt M; Ruiz-Rizzo AL; Sorg C; Finke K
    Neuroimage; 2019 Aug; 196():216-226. PubMed ID: 30978493
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Language proficiency modulates the engagement of cognitive control areas in multilinguals.
    Abutalebi J; Della Rosa PA; Ding G; Weekes B; Costa A; Green DW
    Cortex; 2013 Mar; 49(3):905-11. PubMed ID: 23021069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The neural basis of the psychomotor vigilance task.
    Drummond SP; Bischoff-Grethe A; Dinges DF; Ayalon L; Mednick SC; Meloy MJ
    Sleep; 2005 Sep; 28(9):1059-68. PubMed ID: 16268374
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parasympathetic arousal-related cortical activity is associated with attention during cognitive task performance.
    Barber AD; John M; DeRosse P; Birnbaum ML; Lencz T; Malhotra AK
    Neuroimage; 2020 Mar; 208():116469. PubMed ID: 31846756
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The pulse: transient fMRI signal increases in subcortical arousal systems during transitions in attention.
    Li R; Ryu JH; Vincent P; Springer M; Kluger D; Levinsohn EA; Chen Y; Chen H; Blumenfeld H
    Neuroimage; 2021 May; 232():117873. PubMed ID: 33647499
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands.
    Seidman LJ; Breiter HC; Goodman JM; Goldstein JM; Woodruff PW; O'Craven K; Savoy R; Tsuang MT; Rosen BR
    Neuropsychology; 1998 Oct; 12(4):505-18. PubMed ID: 9805320
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cingulo-opercular network activity maintains alertness.
    Coste CP; Kleinschmidt A
    Neuroimage; 2016 Mar; 128():264-272. PubMed ID: 26801604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Revealing the functional neuroanatomy of intrinsic alertness using fMRI: methodological peculiarities.
    Clemens B; Zvyagintsev M; Sack AT; Heinecke A; Willmes K; Sturm W
    PLoS One; 2011; 6(9):e25453. PubMed ID: 21984928
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Network for auditory intrinsic alertness: a PET study.
    Sturm W; Longoni F; Fimm B; Dietrich T; Weis S; Kemna S; Herzog H; Willmes K
    Neuropsychologia; 2004; 42(5):563-8. PubMed ID: 14725794
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The neural markers of an imminent failure of response inhibition.
    Bengson JJ; Mangun GR; Mazaheri A
    Neuroimage; 2012 Jan; 59(2):1534-9. PubMed ID: 21889992
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phasic arousal in response to auditory warnings after traumatic brain injury.
    Whyte J; Fleming M; Polansky M; Cavallucci C; Coslett HB
    Neuropsychologia; 1997 Mar; 35(3):313-24. PubMed ID: 9051679
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pre-stimulus functional networks modulate task performance in time-pressured evidence gathering and decision-making.
    Sherwin JS; Muraskin J; Sajda P
    Neuroimage; 2015 May; 111():513-25. PubMed ID: 25614974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Does immediate arousal enhance response force in simple reaction time?
    Ulrich R; Mattes S
    Q J Exp Psychol A; 1996 Nov; 49(4):972-90. PubMed ID: 8962543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.