These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 20562325)

  • 1. Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development.
    Festing MF
    Toxicol Pathol; 2010 Aug; 38(5):681-90. PubMed ID: 20562325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving toxicity screening and drug development by using genetically defined strains.
    Festing MF
    Methods Mol Biol; 2010; 602():1-21. PubMed ID: 20012389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically Defined Strains in Drug Development and Toxicity Testing.
    Festing MF
    Methods Mol Biol; 2016; 1438():1-17. PubMed ID: 27150081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of inbred strains and outbred stocks, with special reference to toxicity testing.
    Festing MF
    J Toxicol Environ Health; 1979 Jan; 5(1):53-68. PubMed ID: 423306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic variation in outbred rats and mice and its implications for toxicological screening.
    Festing MF
    J Exp Anim Sci; 1993 Sep; 35(5-6):210-20. PubMed ID: 8218436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence should trump intuition by preferring inbred strains to outbred stocks in preclinical research.
    Festing MF
    ILAR J; 2014; 55(3):399-404. PubMed ID: 25541542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How omics technologies can contribute to the '3R' principles by introducing new strategies in animal testing.
    Kroeger M
    Trends Biotechnol; 2006 Aug; 24(8):343-6. PubMed ID: 16782220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimising the design of preliminary toxicity studies for pharmaceutical safety testing in the dog.
    Smith D; Combes R; Depelchin O; Jacobsen SD; Hack R; Luft J; Lammens L; von Landenberg F; Phillips B; Pfister R; Rabemampianina Y; Sparrow S; Stark C; Stephan-Gueldner M
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):95-101. PubMed ID: 15698532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates.
    Kramer JA; Sagartz JE; Morris DL
    Nat Rev Drug Discov; 2007 Aug; 6(8):636-49. PubMed ID: 17643090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the dog as non-rodent test species in the safety testing schedule associated with the registration of crop and plant protection products (pesticides): present status.
    Box RJ; Spielmann H
    Arch Toxicol; 2005 Nov; 79(11):615-26. PubMed ID: 15940470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticancer Drug Development: The Way Forward.
    Connors T
    Oncologist; 1996; 1(3):180-181. PubMed ID: 10387985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH).
    Lilienblum W; Dekant W; Foth H; Gebel T; Hengstler JG; Kahl R; Kramer PJ; Schweinfurth H; Wollin KM
    Arch Toxicol; 2008 Apr; 82(4):211-36. PubMed ID: 18322675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The choice of animals in toxicological screening: inbred strains and the factorial design of experiment.
    Festing MF
    Acta Zool Pathol Antverp; 1980 Oct; (75):117-31. PubMed ID: 7258036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of early testing on postweaning performance in untreated F344 rats, with comparisons to Sprague-Dawley rats, using a standardized battery of tests for behavioral teratogenesis.
    Vorhees CV
    Neurobehav Toxicol Teratol; 1983; 5(5):587-91. PubMed ID: 6664416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Juvenile animal toxicity study designs to support pediatric drug development.
    Cappon GD; Bailey GP; Buschmann J; Feuston MH; Fisher JE; Hew KW; Hoberman AM; Ooshima Y; Stump DG; Hurtt ME
    Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):463-9. PubMed ID: 20025047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High dose selection in general toxicity studies for drug development: A pharmaceutical industry perspective.
    Buckley LA; Dorato MA
    Regul Toxicol Pharmacol; 2009 Aug; 54(3):301-7. PubMed ID: 19477212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational toxicology--a tool for early safety evaluation.
    Merlot C
    Drug Discov Today; 2010 Jan; 15(1-2):16-22. PubMed ID: 19835978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of the nonclinical quality and toxicology testing for recombinant biopharmaceuticals produced in mammalian cells.
    Lebrec H; Narayanan P; Nims R
    J Appl Toxicol; 2010 Jul; 30(5):387-96. PubMed ID: 20589744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryo-fetal developmental toxicity study design for pharmaceuticals.
    Wise LD; Buschmann J; Feuston MH; Fisher JE; Hew KW; Hoberman AM; Lerman SA; Ooshima Y; Stump DG
    Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):418-28. PubMed ID: 20025038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.