These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 20562482)
1. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties. Dionízio Moreira M; Venezuela P; Miwa RH Nanotechnology; 2010 Jul; 21(28):285204. PubMed ID: 20562482 [TBL] [Abstract][Full Text] [Related]
2. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires. Schmidt TM; Miwa RH Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926 [TBL] [Abstract][Full Text] [Related]
3. Polychromatic emission in a wide energy range from InP-InAs-InP multi-shell nanowires. Battiato S; Wu S; Zannier V; Bertoni A; Goldoni G; Li A; Xiao S; Han XD; Beltram F; Sorba L; Xu X; Rossella F Nanotechnology; 2019 May; 30(19):194004. PubMed ID: 30634180 [TBL] [Abstract][Full Text] [Related]
4. Growth of InAs/InP core-shell nanowires with various pure crystal structures. Gorji Ghalamestani S; Heurlin M; Wernersson LE; Lehmann S; Dick KA Nanotechnology; 2012 Jul; 23(28):285601. PubMed ID: 22717421 [TBL] [Abstract][Full Text] [Related]
5. Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires. Rosini M; Magri R ACS Nano; 2010 Oct; 4(10):6021-31. PubMed ID: 20853868 [TBL] [Abstract][Full Text] [Related]
6. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires. Li D; Wang Z; Gao F Nanotechnology; 2010 Dec; 21(50):505709. PubMed ID: 21098947 [TBL] [Abstract][Full Text] [Related]
7. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires. Wang Y; Jackson HE; Smith LM; Burgess T; Paiman S; Gao Q; Tan HH; Jagadish C Nano Lett; 2014 Dec; 14(12):7153-60. PubMed ID: 25382815 [TBL] [Abstract][Full Text] [Related]
9. Blueshift of electroluminescence from single n-InP nanowire/p-Si heterojunctions due to the Burstein-Moss effect. Liu C; Dai L; You LP; Xu WJ; Qin GG Nanotechnology; 2008 Nov; 19(46):465203. PubMed ID: 21836237 [TBL] [Abstract][Full Text] [Related]
10. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires. Fu M; Tang Z; Li X; Ning Z; Pan D; Zhao J; Wei X; Chen Q Nano Lett; 2016 Apr; 16(4):2478-84. PubMed ID: 27002386 [TBL] [Abstract][Full Text] [Related]
11. Growth dynamics of InAs/InP nanowire heterostructures by Au-assisted chemical beam epitaxy. Zannier V; Rossi F; Ercolani D; Sorba L Nanotechnology; 2019 Mar; 30(9):094003. PubMed ID: 30537697 [TBL] [Abstract][Full Text] [Related]
13. Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction. Tedeschi D; Fonseka HA; Blundo E; Granados Del Águila A; Guo Y; Tan HH; Christianen PCM; Jagadish C; Polimeni A; De Luca M ACS Nano; 2020 Sep; 14(9):11613-11622. PubMed ID: 32865391 [TBL] [Abstract][Full Text] [Related]
14. Control and understanding of kink formation in InAs-InP heterostructure nanowires. Fahlvik Svensson S; Jeppesen S; Thelander C; Samuelson L; Linke H; Dick KA Nanotechnology; 2013 Aug; 24(34):345601. PubMed ID: 23900037 [TBL] [Abstract][Full Text] [Related]