BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 20562527)

  • 1. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.
    Migneco G; Whitaker-Menezes D; Chiavarina B; Castello-Cros R; Pavlides S; Pestell RG; Fatatis A; Flomenberg N; Tsirigos A; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Jun; 9(12):2412-22. PubMed ID: 20562527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection.
    Balliet RM; Capparelli C; Guido C; Pestell TG; Martinez-Outschoorn UE; Lin Z; Whitaker-Menezes D; Chiavarina B; Pestell RG; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Dec; 10(23):4065-73. PubMed ID: 22129993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers.
    Witkiewicz AK; Dasgupta A; Sotgia F; Mercier I; Pestell RG; Sabel M; Kleer CG; Brody JR; Lisanti MP
    Am J Pathol; 2009 Jun; 174(6):2023-34. PubMed ID: 19411448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic reprogramming of normal oral fibroblasts correlated with increased glycolytic metabolism of oral squamous cell carcinoma and precedes their activation into carcinoma associated fibroblasts.
    Zhang Z; Gao Z; Rajthala S; Sapkota D; Dongre H; Parajuli H; Suliman S; Das R; Li L; Bindoff LA; Costea DE; Liang X
    Cell Mol Life Sci; 2020 Mar; 77(6):1115-1133. PubMed ID: 31270582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of oxidative stress and the microenvironment in breast cancer development and progression.
    Jezierska-Drutel A; Rosenzweig SA; Neumann CA
    Adv Cancer Res; 2013; 119():107-25. PubMed ID: 23870510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment.
    Littleflower AB; Parambil ST; Antony GR; Subhadradevi L
    Biochimie; 2024 May; 220():107-121. PubMed ID: 38184121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhancement of glycolysis regulates pancreatic cancer metastasis.
    Yang J; Ren B; Yang G; Wang H; Chen G; You L; Zhang T; Zhao Y
    Cell Mol Life Sci; 2020 Jan; 77(2):305-321. PubMed ID: 31432232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stromal cell expression of caveolin-1 predicts outcome in breast cancer.
    Sloan EK; Ciocca DR; Pouliot N; Natoli A; Restall C; Henderson MA; Fanelli MA; Cuello-Carrión FD; Gago FE; Anderson RL
    Am J Pathol; 2009 Jun; 174(6):2035-43. PubMed ID: 19411449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer associated fibroblast FAK regulates malignant cell metabolism.
    Demircioglu F; Wang J; Candido J; Costa ASH; Casado P; de Luxan Delgado B; Reynolds LE; Gomez-Escudero J; Newport E; Rajeeve V; Baker AM; Roy-Luzarraga M; Graham TA; Foster J; Wang Y; Campbell JJ; Singh R; Zhang P; Schall TJ; Balkwill FR; Sosabowski J; Cutillas PR; Frezza C; Sancho P; Hodivala-Dilke K
    Nat Commun; 2020 Mar; 11(1):1290. PubMed ID: 32157087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic interplay between glycolysis and mitochondrial oxidation: The reverse Warburg effect and its therapeutic implication.
    Lee M; Yoon JH
    World J Biol Chem; 2015 Aug; 6(3):148-61. PubMed ID: 26322173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of stromal biglycan promotes normalization of the tumor microenvironment and enhances chemotherapeutic efficacy.
    Cong L; Maishi N; Annan DA; Young MF; Morimoto H; Morimoto M; Nam JM; Hida Y; Hida K
    Breast Cancer Res; 2021 May; 23(1):51. PubMed ID: 33966638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells.
    Caneba CA; Yang L; Baddour J; Curtis R; Win J; Hartig S; Marini J; Nagrath D
    Cell Death Dis; 2014 Jun; 5(6):e1302. PubMed ID: 24967964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Everolimus decreases [U-
    Ariaans G; Tiersma JF; Evers B; Gerding A; Waaijer SJH; Koster RA; Touw DJ; Bakker BM; Reijngoud DJ; de Jong S; Jalving M
    Biomed Pharmacother; 2024 Apr; 173():116362. PubMed ID: 38432130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton export upregulates aerobic glycolysis.
    Russell S; Xu L; Kam Y; Abrahams D; Ordway B; Lopez AS; Bui MM; Johnson J; Epstein T; Ruiz E; Lloyd MC; Swietach P; Verduzco D; Wojtkowiak J; Gillies RJ
    BMC Biol; 2022 Jul; 20(1):163. PubMed ID: 35840963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Molecular Mechanisms behind Advanced Breast Cancer Metabolism: Warburg Effect, OXPHOS, and Calcium.
    Mitaishvili E; Feinsod H; David Z; Shpigel J; Fernandez C; Sauane M; de la Parra C
    Front Biosci (Landmark Ed); 2024 Mar; 29(3):99. PubMed ID: 38538285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells.
    Andrade SS; Sumikawa JT; Castro ED; Batista FP; Paredes-Gamero E; Oliveira LC; Guerra IM; Peres GB; Cavalheiro RP; Juliano L; Nazário AP; Facina G; Tsai SM; Oliva ML; Girão MJ
    Oncotarget; 2017 Mar; 8(10):16851-16874. PubMed ID: 28187434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis.
    Reiter RJ; Sharma R; Ma Q; Rorsales-Corral S; de Almeida Chuffa LG
    Cell Mol Life Sci; 2020 Jul; 77(13):2527-2542. PubMed ID: 31970423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases.
    van Noorden CJF; Yetkin-Arik B; Serrano Martinez P; Bakker N; van Breest Smallenburg ME; Schlingemann RO; Klaassen I; Majc B; Habic A; Bogataj U; Galun SK; Vittori M; Erdani Kreft M; Novak M; Breznik B; Hira VVV
    J Histochem Cytochem; 2024 May; 72(5):329-352. PubMed ID: 38733294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Malic Enzyme Couples Mitochondria with Aerobic Glycolysis in Osteoblasts.
    Lee WC; Ji X; Nissim I; Long F
    Cell Rep; 2020 Sep; 32(10):108108. PubMed ID: 32905773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distribution of cellular function: the partitioning of proteins between mitochondria and the nucleus in MCF7 breast cancer cells.
    Qattan AT; Radulovic M; Crawford M; Godovac-Zimmermann J
    J Proteome Res; 2012 Dec; 11(12):6080-101. PubMed ID: 23051583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.