These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 2056266)
1. Computer model of excitation and recovery in the anisotropic myocardium. III. Arrhythmogenic conditions in the simplified left ventricle. Leon LJ; Horácek BM J Electrocardiol; 1991 Jan; 24(1):33-41. PubMed ID: 2056266 [TBL] [Abstract][Full Text] [Related]
2. Computer model of excitation and recovery in the anisotropic myocardium. II. Excitation in the simplified left ventricle. Leon LJ; Horácek BM J Electrocardiol; 1991 Jan; 24(1):17-31. PubMed ID: 2056265 [TBL] [Abstract][Full Text] [Related]
3. Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements. Leon LJ; Horácek BM J Electrocardiol; 1991 Jan; 24(1):1-15. PubMed ID: 2056264 [TBL] [Abstract][Full Text] [Related]
4. Anisotropic reentry in a perfused 2-dimensional layer of rabbit ventricular myocardium. Schalij MJ; Boersma L; Huijberts M; Allessie MA Circulation; 2000 Nov; 102(21):2650-8. PubMed ID: 11085970 [TBL] [Abstract][Full Text] [Related]
5. A computer heart model incorporating anisotropic propagation. III. Simulation of ectopic beats. Xu Z; Gulrajani RM; Molin F; Lorange M; Dubé B; Savard P; Nadeau RA J Electrocardiol; 1996 Apr; 29(2):73-90. PubMed ID: 8728593 [TBL] [Abstract][Full Text] [Related]
6. Role of infarct scar dimensions, border zone repolarization properties and anisotropy in the origin and maintenance of cardiac reentry. Colli-Franzone P; Gionti V; Pavarino LF; Scacchi S; Storti C Math Biosci; 2019 Sep; 315():108228. PubMed ID: 31325444 [TBL] [Abstract][Full Text] [Related]
7. Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models. Wei D; Okazaki O; Harumi K; Harasawa E; Hosaka H IEEE Trans Biomed Eng; 1995 Apr; 42(4):343-57. PubMed ID: 7729834 [TBL] [Abstract][Full Text] [Related]
8. The role of diastolic outward current deactivation kinetics on the induction of spiral waves. Kogan BY; Karplus WJ; Billett BS; Pang AT; Khan SS; Mandel WJ; Karagueuzian HS Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1688-93. PubMed ID: 1721159 [TBL] [Abstract][Full Text] [Related]
9. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure]. Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475 [TBL] [Abstract][Full Text] [Related]
10. Resetting of ventricular tachycardia by single extrastimuli. Relation to slow conduction within the reentrant circuit. Kay GN; Epstein AE; Plumb VJ Circulation; 1990 May; 81(5):1507-19. PubMed ID: 2331764 [TBL] [Abstract][Full Text] [Related]
11. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge. Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688 [TBL] [Abstract][Full Text] [Related]
12. Influence of anisotropic conduction properties in the propagation of the cardiac action potential. Valderrábano M Prog Biophys Mol Biol; 2007; 94(1-2):144-68. PubMed ID: 17482242 [TBL] [Abstract][Full Text] [Related]
13. Reentrant arrhythmias and their control in models of mammalian cardiac tissue. Biktashev VN; Holden AV J Electrocardiol; 1999; 32 Suppl():76-83. PubMed ID: 10688306 [TBL] [Abstract][Full Text] [Related]
14. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. Colli Franzone P; Pavarino LF; Taccardi B Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380 [TBL] [Abstract][Full Text] [Related]
15. Filament behavior in a computational model of ventricular fibrillation in the canine heart. Clayton RH; Holden AV IEEE Trans Biomed Eng; 2004 Jan; 51(1):28-34. PubMed ID: 14723491 [TBL] [Abstract][Full Text] [Related]
16. Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes. Caldwell BJ; Trew ML; Sands GB; Hooks DA; LeGrice IJ; Smaill BH Circ Arrhythm Electrophysiol; 2009 Aug; 2(4):433-40. PubMed ID: 19808500 [TBL] [Abstract][Full Text] [Related]
17. Computer simulations of three-dimensional propagation in ventricular myocardium. Effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation. Pollard AE; Burgess MJ; Spitzer KW Circ Res; 1993 Apr; 72(4):744-56. PubMed ID: 8443866 [TBL] [Abstract][Full Text] [Related]
18. Modeling ventricular excitation: axial and orthotropic anisotropy effects on wavefronts and potentials. Colli-Franzone P; Guerri L; Taccardi B Math Biosci; 2004; 188():191-205. PubMed ID: 14766102 [TBL] [Abstract][Full Text] [Related]
19. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions. Clements JC; Horácek BM IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664 [TBL] [Abstract][Full Text] [Related]
20. [Anisotropy and reentrant ventricular tachycardia: experimental model in the isolated rabbit heart]. Brugada J; Boersma L; Kirchhof C; Allessie M Rev Esp Cardiol; 1990 Oct; 43(8):558-68. PubMed ID: 2099516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]