BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 20563306)

  • 21. Robust circadian oscillations in growing cyanobacteria require transcriptional feedback.
    Teng SW; Mukherji S; Moffitt JR; de Buyl S; O'Shea EK
    Science; 2013 May; 340(6133):737-40. PubMed ID: 23661759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dual-feedback loop model of the mammalian circadian clock for multi-input control of circadian phase.
    Brown LS; Doyle FJ
    PLoS Comput Biol; 2020 Nov; 16(11):e1008459. PubMed ID: 33226977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic compensation and circadian resilience in prokaryotic cyanobacteria.
    Johnson CH; Egli M
    Annu Rev Biochem; 2014; 83():221-47. PubMed ID: 24905782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of membrane-associated oscillators to biological timing at different timescales.
    Stengl M; Schneider AC
    Front Physiol; 2023; 14():1243455. PubMed ID: 38264332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora.
    Brunner M; Schafmeier T
    Genes Dev; 2006 May; 20(9):1061-74. PubMed ID: 16651653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity of KaiC-based timing systems in marine Cyanobacteria.
    Axmann IM; Hertel S; Wiegard A; Dörrich AK; Wilde A
    Mar Genomics; 2014 Apr; 14():3-16. PubMed ID: 24388874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systems-level characterization of the kernel mechanism of the cyanobacterial circadian oscillator.
    Ma L; Ranganathan R
    Biosystems; 2014 Mar; 117():30-9. PubMed ID: 24444761
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria.
    Miyoshi F; Nakayama Y; Kaizu K; Iwasaki H; Tomita M
    J Biol Rhythms; 2007 Feb; 22(1):69-80. PubMed ID: 17229926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional rewiring of an evolutionarily conserved circadian clock.
    Goity A; Dovzhenok A; Lim S; Hong C; Loros J; Dunlap JC; Larrondo LF
    EMBO J; 2024 May; 43(10):2015-2034. PubMed ID: 38627599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation.
    Murayama Y; Kori H; Oshima C; Kondo T; Iwasaki H; Ito H
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5641-5646. PubMed ID: 28515313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Principles of the animal molecular clock learned from Neurospora.
    Loros JJ
    Eur J Neurosci; 2020 Jan; 51(1):19-33. PubMed ID: 30687965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. No promoter left behind: global circadian gene expression in cyanobacteria.
    Woelfle MA; Johnson CH
    J Biol Rhythms; 2006 Dec; 21(6):419-31. PubMed ID: 17107933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro regulation of circadian phosphorylation rhythm of cyanobacterial clock protein KaiC by KaiA and KaiB.
    Nakajima M; Ito H; Kondo T
    FEBS Lett; 2010 Mar; 584(5):898-902. PubMed ID: 20079736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The molecular clockwork of mammalian cells.
    Yi JS; Díaz NM; D'Souza S; Buhr ED
    Semin Cell Dev Biol; 2022 Jun; 126():87-96. PubMed ID: 33810978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Circadian rhythms in the synthesis and degradation of a master clock protein KaiC in cyanobacteria.
    Imai K; Nishiwaki T; Kondo T; Iwasaki H
    J Biol Chem; 2004 Aug; 279(35):36534-9. PubMed ID: 15229218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth.
    Diamond S; Jun D; Rubin BE; Golden SS
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):E1916-25. PubMed ID: 25825710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights into a circadian oscillator.
    Johnson CH; Egli M; Stewart PL
    Science; 2008 Oct; 322(5902):697-701. PubMed ID: 18974343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The fine-tuned crosstalk between lysine acetylation and the circadian rhythm.
    Jiang H; Wang X; Ma J; Xu G
    Biochim Biophys Acta Gene Regul Mech; 2023 Sep; 1866(3):194958. PubMed ID: 37453648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of the monomer-dimer-tetramer interconversion of the clock protein KaiB in the generation of circadian oscillations in cyanobacteria.
    Iida T; Mutoh R; Onai K; Morishita M; Furukawa Y; Namba K; Ishiura M
    Genes Cells; 2015 Mar; 20(3):173-90. PubMed ID: 25492525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pacemaker-neuron-dependent disturbance of the molecular clockwork by a Drosophila CLOCK mutant homologous to the mouse Clock mutation.
    Lee E; Cho E; Kang DH; Jeong EH; Chen Z; Yoo SH; Kim EY
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):E4904-13. PubMed ID: 27489346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.