BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 2056352)

  • 1. The three-dimensional architecture of the mitotic spindle, analyzed by confocal fluorescence and electron microscopy.
    Merdes A; Stelzer EH; De Mey J
    J Electron Microsc Tech; 1991 May; 18(1):61-73. PubMed ID: 2056352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions.
    Waterman-Storer CM; Sanger JW; Sanger JM
    Cell Motil Cytoskeleton; 1993; 26(1):19-39. PubMed ID: 8106173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of kinetochore-spindle attachment and polewards movement analyzed in PtK2 cells at the prophase-prometaphase transition.
    Merdes A; De Mey J
    Eur J Cell Biol; 1990 Dec; 53(2):313-25. PubMed ID: 2081546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule dynamics in the chromosomal spindle fiber: analysis by fluorescence and high-resolution polarization microscopy.
    Cassimeris L; Inoué S; Salmon ED
    Cell Motil Cytoskeleton; 1988; 10(1-2):185-96. PubMed ID: 3180243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of kinetochore fibres in crane-fly spermatocytes after irradiation with an ultraviolet microbeam: neither microtubules nor actin filaments remain in the irradiated region.
    Forer A; Spurck T; Pickett-Heaps JD; Wilson PJ
    Cell Motil Cytoskeleton; 2003 Nov; 56(3):173-92. PubMed ID: 14569597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards correlative imaging of plant cortical microtubule arrays: combining ultrastructure with real-time microtubule dynamics.
    Barton DA; Gardiner JC; Overall RL
    J Microsc; 2009 Sep; 235(3):241-51. PubMed ID: 19754719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular localization of the BRCA1 gene product in mitotic cells.
    Lotti LV; Ottini L; D'Amico C; Gradini R; Cama A; Belleudi F; Frati L; Torrisi MR; Mariani-Costantini R
    Genes Chromosomes Cancer; 2002 Nov; 35(3):193-203. PubMed ID: 12353262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochalasin J treatment significantly alters mitotic spindle microtubule organization and kinetochore structure in PtK1 cells.
    Wrench GA; Snyder JA
    Cell Motil Cytoskeleton; 1997; 36(2):112-24. PubMed ID: 9015200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal fluorescence microscopy and three-dimensional reconstruction.
    Wright SJ; Schatten G
    J Electron Microsc Tech; 1991 May; 18(1):2-10. PubMed ID: 2056348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells.
    Raynaud-Messina B; Mazzolini L; Moisand A; Cirinesi AM; Wright M
    J Cell Sci; 2004 Nov; 117(Pt 23):5497-507. PubMed ID: 15479719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal microscopy in biomedical research.
    Rigby PJ; Goldie RG
    Croat Med J; 1999 Sep; 40(3):346-52. PubMed ID: 10411961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Three-dimensional analysis of chromosomes by a computerized fluorescence microscope system].
    Haraguchi T; Hiraoka Y
    Nihon Rinsho; 1996 Sep; 54(9):2574-82. PubMed ID: 8890595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic organization of microtubules and microtubule-organizing centers during the sexual phase of a parasitic protozoan, Lecudina tuzetae (Gregarine, Apicomplexa).
    Kuriyama R; Besse C; Gèze M; Omoto CK; Schrével J
    Cell Motil Cytoskeleton; 2005 Dec; 62(4):195-209. PubMed ID: 16240430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus.
    Hollenbeck PJ; Cande WZ
    Eur J Cell Biol; 1985 May; 37():140-8. PubMed ID: 3896803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
    Gell C; Bormuth V; Brouhard GJ; Cohen DN; Diez S; Friel CT; Helenius J; Nitzsche B; Petzold H; Ribbe J; Schäffer E; Stear JH; Trushko A; Varga V; Widlund PO; Zanic M; Howard J
    Methods Cell Biol; 2010; 95():221-45. PubMed ID: 20466138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena.
    Hiraoka Y; Swedlow JR; Paddy MR; Agard DA; Sedat JW
    Semin Cell Biol; 1991 Jun; 2(3):153-65. PubMed ID: 1720334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of mitotic HeLa cells by advanced polarized light microscopy.
    Morimoto A; Matsunaga S; Kurihara D; Fukui K
    Micron; 2008 Jul; 39(5):635-8. PubMed ID: 17560789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of the endoplasmic reticulum in living non-muscle and muscle cells.
    Sanger JM; Dome JS; Mittal B; Somlyo AV; Sanger JW
    Cell Motil Cytoskeleton; 1989; 13(4):301-19. PubMed ID: 2673551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The organization of the mitotic apparatus poles in etoposide-treated CHO-K1 cells].
    Balashova EE; Riaskina SS; Vinogradova TM; Bystrevskaia VB
    Tsitologiia; 2008; 50(5):420-9. PubMed ID: 18683588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.