BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 20563954)

  • 1. Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices.
    Akbar M; Aschoff A; Georgi JC; Nennig E; Heiland S; Abel R; Stippich C
    Rofo; 2010 Jul; 182(7):594-602. PubMed ID: 20563954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Ortler M; Kostron H; Felber S
    Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically programmable shunt valve: MRI at 3-Tesla.
    Shellock FG; Wilson SF; Mauge CP
    Magn Reson Imaging; 2007 Sep; 25(7):1116-21. PubMed ID: 17707175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cell phone magnetic fields on adjustable cerebrospinal fluid shunt valves.
    Nomura S; Fujisawa H; Suzuki M
    Surg Neurol; 2005 May; 63(5):467-8. PubMed ID: 15883076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves.
    Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M
    Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of magnetic fields from home-use magnetic induction therapy apparatuses on adjustable cerebrospinal fluid shunt valves].
    Nakashima K; Oishi A; Itokawa H; Fujimoto M
    No Shinkei Geka; 2010 Aug; 38(8):725-9. PubMed ID: 20697146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of 3T MRI on the function of shunt valves--evaluation of Paedi GAV, Dual Switch and proGAV.
    Lindner D; Preul C; Trantakis C; Moeller H; Meixensberger J
    Eur J Radiol; 2005 Oct; 56(1):56-9. PubMed ID: 16168265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope.
    Frauenrath T; Hezel F; Heinrichs U; Kozerke S; Utting JF; Kob M; Butenweg C; Boesiger P; Niendorf T
    Invest Radiol; 2009 Sep; 44(9):539-47. PubMed ID: 19652614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Clinical experience with the Sp[hy adjustable valve in the treatment of adult hydrocephalus. A series of 147 cases].
    Bret P; Guyotat J; Ricci AC; Mottolese C; Jouanneau E
    Neurochirurgie; 1999 May; 45(2):98-108; discussion 108-9. PubMed ID: 10448649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging artifacts caused by aneurysm clips and shunt valves: dependence on field strength (1.5 and 3 T) and imaging parameters.
    Olsrud J; Lätt J; Brockstedt S; Romner B; Björkman-Burtscher IM
    J Magn Reson Imaging; 2005 Sep; 22(3):433-7. PubMed ID: 16104008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Fransen P
    Neurosurgery; 1998 Feb; 42(2):430. PubMed ID: 9482199
    [No Abstract]   [Full Text] [Related]  

  • 15. Cervical external immobilization devices: evaluation of magnetic resonance imaging issues at 3.0 Tesla.
    Diaz FL; Tweardy L; Shellock FG
    Spine (Phila Pa 1976); 2010 Feb; 35(4):411-5. PubMed ID: 20110847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Safety and function of programmable ventriculo-peritoneal shunt valves: An in vitro 7 Tesla magnetic resonance imaging study.
    Chen B; Dammann P; Jabbarli R; Sure U; Quick HH; Kraff O; Wrede KH
    PLoS One; 2023; 18(10):e0292666. PubMed ID: 37819939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adjustable shunt valve-induced magnetic resonance imaging artifact: a comparative study.
    Toma AK; Tarnaris A; Grieve JP; Watkins LD; Kitchen ND
    J Neurosurg; 2010 Jul; 113(1):74-8. PubMed ID: 19817540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro investigation of prosthetic heart valves in magnetic resonance imaging: evaluation of potential hazards.
    Pruefer D; Kalden P; Schreiber W; Dahm M; Buerke M; Thelen M; Oelert H
    J Heart Valve Dis; 2001 May; 10(3):410-4. PubMed ID: 11380110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI safety of a programmable shunt assistant at 3 and 7 Tesla.
    Mirzayan MJ; Klinge PM; Samii M; Goetz F; Krauss JK
    Br J Neurosurg; 2012 Jun; 26(3):397-400. PubMed ID: 22348282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromagnetic field hazards involving adjustable shunt valves in hydrocephalus.
    Schneider T; Knauff U; Nitsch J; Firsching R
    J Neurosurg; 2002 Feb; 96(2):331-4. PubMed ID: 11838808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.