BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20564008)

  • 1. Fiber formation of a synthetic spider peptide derived from Nephila clavata.
    Hidaka Y; Kontani K; Taniguchi R; Saiki M; Yokoi S; Yukuhiro K; Yamaguchi H; Miyazawa M
    Biopolymers; 2011; 96(2):222-7. PubMed ID: 20564008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.
    Yang M; Nakazawa Y; Yamauchi K; Knight D; Asakura T
    Biomacromolecules; 2005; 6(6):3220-6. PubMed ID: 16283749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 13 C solid-state NMR study of the 13 C-labeled peptide, (E)8 GGLGGQGAG(A)6 GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.
    Yazawa K; Yamaguchi E; Knight D; Asakura T
    Biopolymers; 2012 Jun; 97(6):347-54. PubMed ID: 21913180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins.
    Zhou C; Leng B; Yao J; Qian J; Chen X; Zhou P; Knight DP; Shao Z
    Biomacromolecules; 2006 Aug; 7(8):2415-9. PubMed ID: 16903690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk--implications for fiber formation.
    Hagn F; Thamm C; Scheibel T; Kessler H
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):310-3. PubMed ID: 21064058
    [No Abstract]   [Full Text] [Related]  

  • 6. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk.
    Holland GP; Lewis RV; Yarger JL
    J Am Chem Soc; 2004 May; 126(18):5867-72. PubMed ID: 15125679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH on the structure of the recombinant C-terminal domain of Nephila clavipes dragline silk protein.
    Gauthier M; Leclerc J; Lefèvre T; Gagné SM; Auger M
    Biomacromolecules; 2014 Dec; 15(12):4447-54. PubMed ID: 25337802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for the structure of the C-terminal domain of dragline spider silk and the role of its conserved cysteine.
    Ittah S; Michaeli A; Goldblum A; Gat U
    Biomacromolecules; 2007 Sep; 8(9):2768-73. PubMed ID: 17696395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural view on spider silk proteins and their role in fiber assembly.
    Hagn F
    J Pept Sci; 2012 Jun; 18(6):357-65. PubMed ID: 22570231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of polyalanine domains in beta-sheet formation in spider silk block copolymers.
    Rabotyagova OS; Cebe P; Kaplan DL
    Macromol Biosci; 2010 Jan; 10(1):49-59. PubMed ID: 19890885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nephila clavipes spider dragline silk microstructure studied by scanning transmission X-ray microscopy.
    Rousseau ME; Hernández Cruz D; West MM; Hitchcock AP; Pézolet M
    J Am Chem Soc; 2007 Apr; 129(13):3897-905. PubMed ID: 17352470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proposed model for dragline spider silk self-assembly: insights from the effect of the repetitive domain size on fiber properties.
    Ittah S; Barak N; Gat U
    Biopolymers; 2010 May; 93(5):458-68. PubMed ID: 20014164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana.
    Huang W; Lin Z; Sin YM; Li D; Gong Z; Yang D
    Biochimie; 2006 Jul; 88(7):849-58. PubMed ID: 16616407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T
    J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ conformation of spider silk proteins in the intact major ampullate gland and in solution.
    Lefèvre T; Leclerc J; Rioux-Dubé JF; Buffeteau T; Paquin MC; Rousseau ME; Cloutier I; Auger M; Gagné SM; Boudreault S; Cloutier C; Pézolet M
    Biomacromolecules; 2007 Aug; 8(8):2342-4. PubMed ID: 17658884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy.
    Holland GP; Creager MS; Jenkins JE; Lewis RV; Yarger JL
    J Am Chem Soc; 2008 Jul; 130(30):9871-7. PubMed ID: 18593157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins.
    Yang M; Asakura T
    J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altering the mechanics of spider silk through methanol post-spin drawing.
    Brooks AE; Creager MS; Lewis RV
    Biomed Sci Instrum; 2005; 41():1-6. PubMed ID: 15850073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR characterization of native liquid spider dragline silk from Nephila edulis.
    Hronska M; van Beek JD; Williamson PT; Vollrath F; Meier BH
    Biomacromolecules; 2004; 5(3):834-9. PubMed ID: 15132669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.