BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 20564224)

  • 1. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon.
    Zhong Q; Kowluru RA
    J Cell Biochem; 2010 Aug; 110(6):1306-13. PubMed ID: 20564224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: role of histone methylation.
    Zhong Q; Kowluru RA
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):244-50. PubMed ID: 23221071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylation of retinal histones in diabetes increases inflammatory proteins: effects of minocycline and manipulation of histone acetyltransferase (HAT) and histone deacetylase (HDAC).
    Kadiyala CS; Zheng L; Du Y; Yohannes E; Kao HY; Miyagi M; Kern TS
    J Biol Chem; 2012 Jul; 287(31):25869-80. PubMed ID: 22648458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy.
    Zhong Q; Kowluru RA
    Diabetes; 2011 Apr; 60(4):1304-13. PubMed ID: 21357467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory.
    Chan PS; Kanwar M; Kowluru RA
    J Diabetes Complications; 2010; 24(1):55-63. PubMed ID: 19056300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic modifications of Nrf2-mediated glutamate-cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression.
    Mishra M; Zhong Q; Kowluru RA
    Free Radic Biol Med; 2014 Oct; 75():129-39. PubMed ID: 25016074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperglycemia-induced effects on glycocalyx components in the retina.
    Kaur G; Rogers J; Rashdan NA; Cruz-Topete D; Pattillo CB; Hartson SD; Harris NR
    Exp Eye Res; 2021 Dec; 213():108846. PubMed ID: 34801534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Role of DNA Methylation in the Metabolic Memory Phenomenon Associated With the Continued Progression of Diabetic Retinopathy.
    Mishra M; Kowluru RA
    Invest Ophthalmol Vis Sci; 2016 Oct; 57(13):5748-5757. PubMed ID: 27787562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression.
    Madsen-Bouterse SA; Mohammad G; Kanwar M; Kowluru RA
    Antioxid Redox Signal; 2010 Sep; 13(6):797-805. PubMed ID: 20088705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imbalance between HDAC and HAT activities drives aberrant STAT1/MyD88 expression in macrophages from type 1 diabetic mice.
    Filgueiras LR; Brandt SL; Ramalho TR; Jancar S; Serezani CH
    J Diabetes Complications; 2017 Feb; 31(2):334-339. PubMed ID: 27623388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetics and Mitochondrial Stability in the Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy.
    Kowluru RA; Mohammad G
    Sci Rep; 2020 Apr; 10(1):6655. PubMed ID: 32313015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic memory phenomenon and accumulation of peroxynitrite in retinal capillaries.
    Kowluru RA; Kanwar M; Kennedy A
    Exp Diabetes Res; 2007; 2007():21976. PubMed ID: 17641740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.
    Wang W; Wang Q; Wan D; Sun Y; Wang L; Chen H; Liu C; Petersen RB; Li J; Xue W; Zheng L; Huang K
    Autophagy; 2017 May; 13(5):941-954. PubMed ID: 28409999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy and its regulation by lipoic acid.
    Santos JM; Kowluru RA
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8791-8. PubMed ID: 22003111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired Removal of the Damaged Mitochondria in the Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy.
    Kowluru RA; Mohammad G; Kumar J
    Mol Neurobiol; 2024 Jan; 61(1):188-199. PubMed ID: 37596436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy, and its continued progression after termination of hyperglycemia.
    Mishra M; Kowluru RA
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6960-7. PubMed ID: 25249609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats.
    Kowluru RA
    Diabetes; 2003 Mar; 52(3):818-23. PubMed ID: 12606525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant-Rich Extract from Plantaginis Semen Ameliorates Diabetic Retinal Injury in a Streptozotocin-Induced Diabetic Rat Model.
    Tzeng TF; Liu WY; Liou SS; Hong TY; Liu IM
    Nutrients; 2016 Sep; 8(9):. PubMed ID: 27649243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy.
    Zhong Q; Kowluru RA
    Diabetes; 2013 Jul; 62(7):2559-68. PubMed ID: 23423566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina.
    Kowluru RA; Chakrabarti S; Chen S
    Acta Diabetol; 2004 Dec; 41(4):194-9. PubMed ID: 15660203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.