BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 20564224)

  • 21. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy.
    Kanwar M; Kowluru RA
    Diabetes; 2009 Jan; 58(1):227-34. PubMed ID: 18852331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surrogate alcohols and their metabolites modify histone H3 acetylation: involvement of histone acetyl transferase and histone deacetylase.
    Choudhury M; Shukla SD
    Alcohol Clin Exp Res; 2008 May; 32(5):829-39. PubMed ID: 18336638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manganese chloride induces histone acetylation changes in neuronal cells: Its role in manganese-induced damage.
    Guo Z; Zhang Z; Wang Q; Zhang J; Wang L; Zhang Q; Li H; Wu S
    Neurotoxicology; 2018 Mar; 65():255-263. PubMed ID: 29155171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy.
    Santos JM; Tewari S; Kowluru RA
    Free Radic Biol Med; 2012 Nov; 53(9):1729-37. PubMed ID: 22982046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiac histones are substrates of histone deacetylase activity in hemorrhagic shock and resuscitation.
    Lin T; Alam HB; Chen H; Britten-Webb J; Rhee P; Kirkpatrick J; Koustova E
    Surgery; 2006 Mar; 139(3):365-76. PubMed ID: 16546502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diabetic retinopathy and damage to mitochondrial structure and transport machinery.
    Zhong Q; Kowluru RA
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):8739-46. PubMed ID: 22003103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic memory in diabetes - from in vitro oddity to in vivo problem: role of apoptosis.
    Kowluru RA; Chan PS
    Brain Res Bull; 2010 Feb; 81(2-3):297-302. PubMed ID: 19463916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy.
    Kowluru RA; Santos JM; Zhong Q
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(9):5653-60. PubMed ID: 24894401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy.
    Tewari S; Zhong Q; Santos JM; Kowluru RA
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):4881-8. PubMed ID: 22743328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions.
    Perrone L; Devi TS; Hosoya K; Terasaki T; Singh LP
    J Cell Physiol; 2009 Oct; 221(1):262-72. PubMed ID: 19562690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elevated histone acetylations in Müller cells contribute to inflammation: a novel inhibitory effect of minocycline.
    Wang LL; Chen H; Huang K; Zheng L
    Glia; 2012 Dec; 60(12):1896-905. PubMed ID: 22915469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tiam1-Rac1 Axis Promotes Activation of p38 MAP Kinase in the Development of Diabetic Retinopathy: Evidence for a Requisite Role for Protein Palmitoylation.
    Veluthakal R; Kumar B; Mohammad G; Kowluru A; Kowluru RA
    Cell Physiol Biochem; 2015; 36(1):208-20. PubMed ID: 25967961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ischemic preconditioning, retinal neuroprotection and histone deacetylase activities.
    Fan J; Alsarraf O; Chou CJ; Yates PW; Goodwin NC; Rice DS; Crosson CE
    Exp Eye Res; 2016 May; 146():269-275. PubMed ID: 27060376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial Dynamics in the Metabolic Memory of Diabetic Retinopathy.
    Mohammad G; Kowluru RA
    J Diabetes Res; 2022; 2022():3555889. PubMed ID: 35399705
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy.
    Mishra M; Zhong Q; Kowluru RA
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(11):7256-65. PubMed ID: 25301875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2.
    Kowluru RA; Kanwar M
    Free Radic Biol Med; 2009 Jun; 46(12):1677-85. PubMed ID: 19345729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review.
    Vahid F; Zand H; Nosrat-Mirshekarlou E; Najafi R; Hekmatdoost A
    Gene; 2015 May; 562(1):8-15. PubMed ID: 25701602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using Histone Deacetylase Inhibitors to Analyze the Relevance of HDACs for Translation.
    Hutt DM; Roth DM; Marchal C; Bouchecareilh M
    Methods Mol Biol; 2017; 1510():77-91. PubMed ID: 27761814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impaired transport of mitochondrial transcription factor A (TFAM) and the metabolic memory phenomenon associated with the progression of diabetic retinopathy.
    Santos JM; Kowluru RA
    Diabetes Metab Res Rev; 2013 Mar; 29(3):204-13. PubMed ID: 23255365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Curcumin-induced histone hypoacetylation: the role of reactive oxygen species.
    Kang J; Chen J; Shi Y; Jia J; Zhang Y
    Biochem Pharmacol; 2005 Apr; 69(8):1205-13. PubMed ID: 15794941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.