These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 20564419)
21. L(+)-lactic acid production using Lactobacillus casei in solid-state fermentation. Rojan PJ; Nampoothiri KM; Nair AS; Pandey A Biotechnol Lett; 2005 Nov; 27(21):1685-8. PubMed ID: 16247675 [TBL] [Abstract][Full Text] [Related]
22. Development, characterisation and sensory qualities of probiotic beverage from provitamin A cassava ( Oguntoye MA; Ezekiel OO Food Sci Technol Int; 2024 Apr; 30(3):218-231. PubMed ID: 36474352 [TBL] [Abstract][Full Text] [Related]
23. Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study. Djukić-Vuković A; Mladenović D; Radosavljević M; Kocić-Tanackov S; Pejin J; Mojović L Waste Manag; 2016 Feb; 48():478-482. PubMed ID: 26639411 [TBL] [Abstract][Full Text] [Related]
24. Production of L(+) lactic acid from cassava starch hydrolyzate by immobilized Lactobacillus delbrueckii. John RP; Nampoothiri KM; Pandey A J Basic Microbiol; 2007 Feb; 47(1):25-30. PubMed ID: 17304614 [TBL] [Abstract][Full Text] [Related]
25. Utilization of by-products derived from bioethanol production process for cost-effective production of lactic acid. Moon SK; Wee YJ; Choi GW J Ind Microbiol Biotechnol; 2014 Oct; 41(10):1525-31. PubMed ID: 25163666 [TBL] [Abstract][Full Text] [Related]
26. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Cui F; Li Y; Wan C Bioresour Technol; 2011 Jan; 102(2):1831-6. PubMed ID: 20943382 [TBL] [Abstract][Full Text] [Related]
27. Immobilization of Lactobacillus rhamnosus in polyvinyl alcohol/calcium alginate matrix for production of lactic acid. Radosavljević M; Lević S; Belović M; Pejin J; Djukić-Vuković A; Mojović L; Nedović V Bioprocess Biosyst Eng; 2020 Feb; 43(2):315-322. PubMed ID: 31605205 [TBL] [Abstract][Full Text] [Related]
28. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Yu L; Pei X; Lei T; Wang Y; Feng Y J Biotechnol; 2008 Mar; 134(1-2):154-9. PubMed ID: 18289712 [TBL] [Abstract][Full Text] [Related]
29. Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small-scale preparation. Coulin P; Farah Z; Assanvo J; Spillmann H; Puhan Z Int J Food Microbiol; 2006 Feb; 106(2):131-6. PubMed ID: 16213052 [TBL] [Abstract][Full Text] [Related]
30. Production of L- and D-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Nguyen CM; Kim JS; Nguyen TN; Kim SK; Choi GJ; Choi YH; Jang KS; Kim JC Bioresour Technol; 2013 Oct; 146():35-43. PubMed ID: 23911815 [TBL] [Abstract][Full Text] [Related]
31. Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. Rivas B; Moldes AB; Domínguez JM; Parajó JC Int J Food Microbiol; 2004 Dec; 97(1):93-8. PubMed ID: 15527923 [TBL] [Abstract][Full Text] [Related]
32. Biotechnological conversion of spent coffee grounds into lactic acid. Hudeckova H; Neureiter M; Obruca S; Frühauf S; Marova I Lett Appl Microbiol; 2018 Apr; 66(4):306-312. PubMed ID: 29330879 [TBL] [Abstract][Full Text] [Related]
33. Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains. Ricci A; Cirlini M; Levante A; Dall'Asta C; Galaverna G; Lazzi C Food Res Int; 2018 Mar; 105():412-422. PubMed ID: 29433231 [TBL] [Abstract][Full Text] [Related]
34. Valorisation of cotton post-industrial textile waste into lactic acid: chemo-mechanical pretreatment, separate hydrolysis and fermentation using engineered yeast. Simonetti M; Butti P; Di Lorenzo RD; Mapelli V; Branduardi P Microb Cell Fact; 2024 Apr; 23(1):106. PubMed ID: 38600576 [TBL] [Abstract][Full Text] [Related]
35. Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice. Choi M; Al-Zahrani SM; Lee SY Bioprocess Biosyst Eng; 2014 Jun; 37(6):1007-15. PubMed ID: 24100793 [TBL] [Abstract][Full Text] [Related]
36. Development of cost-effective media to increase the economic potential for larger-scale bioproduction of natural food additives by Lactobacillus rhamnosus , Debaryomyces hansenii , and Aspergillus niger. Salgado JM; Rodríguez N; Cortés S; Domínguez JM J Agric Food Chem; 2009 Nov; 57(21):10414-28. PubMed ID: 19821581 [TBL] [Abstract][Full Text] [Related]
37. Recovery of lactic acid by repeated batch electrodialysis and lactic acid production using electrodialysis wastewater. Wee YJ; Yun JS; Lee YY; Zeng AP; Ryu HW J Biosci Bioeng; 2005 Feb; 99(2):104-8. PubMed ID: 16233764 [TBL] [Abstract][Full Text] [Related]
38. Utilizing Gelatinized Starchy Waste from Rice Noodle Factory as Substrate for L(+)-Lactic Acid Production by Amylolytic Lactic Acid Bacterium Enterococcus faecium K-1. Unban K; Khanongnuch R; Kanpiengjai A; Shetty K; Khanongnuch C Appl Biochem Biotechnol; 2020 Oct; 192(2):353-366. PubMed ID: 32382944 [TBL] [Abstract][Full Text] [Related]
39. Lactic acid production from food waste hydrolysate by Lactobacillus pentosus: Focus on nitrogen supplementation, initial sugar concentration, pH, and fed-batch fermentation. Lobeda K; Jin Q; Wu J; Zhang W; Huang H J Food Sci; 2022 Jul; 87(7):3071-3083. PubMed ID: 35669993 [TBL] [Abstract][Full Text] [Related]
40. Solid state fermentation to obtain vegetable products bio-enriched with isoflavone aglycones using lactic cultures. Correa Deza MA; Rodríguez de Olmos A; Garro MS Rev Argent Microbiol; 2019; 51(3):201-207. PubMed ID: 30558854 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]