These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 20564419)
41. Treatment of textile dyeing wastewater by biomass of Lactobacillus: Lactobacillus 12 and Lactobacillus rhamnosus. Sayilgan E; Cakmakci O Environ Sci Pollut Res Int; 2013 Mar; 20(3):1556-64. PubMed ID: 22684899 [TBL] [Abstract][Full Text] [Related]
42. Direct production of L+-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Ohkouchi Y; Inoue Y Bioresour Technol; 2006 Sep; 97(13):1554-62. PubMed ID: 16051483 [TBL] [Abstract][Full Text] [Related]
43. High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Kwon S; Yoo IK; Lee WG; Chang HN; Chang YK Biotechnol Bioeng; 2001 Apr; 73(1):25-34. PubMed ID: 11255149 [TBL] [Abstract][Full Text] [Related]
44. Efficient Conversion of Agroindustrial Waste into D(-) Lactic Acid by Beitel SM; Coelho LF; Contiero J Biomed Res Int; 2020; 2020():4194052. PubMed ID: 32382549 [TBL] [Abstract][Full Text] [Related]
45. Production of lactic acid from cheese whey by batch and repeated batch cultures of Lactobacillus sp. RKY2. Kim HO; Wee YJ; Kim JN; Yun JS; Ryu HW Appl Biochem Biotechnol; 2006; 129-132():694-704. PubMed ID: 16915680 [TBL] [Abstract][Full Text] [Related]
46. Improvement of organoleptic quality of retted cassava products by alkali pretreatment of roots and addition of sodium nitrate during retting. Ogbo FC Int J Food Microbiol; 2003 Dec; 89(1):85-90. PubMed ID: 14580976 [TBL] [Abstract][Full Text] [Related]
47. High-efficient L-lactic acid production from inedible starchy biomass by one-step open fermentation using thermotolerant Lactobacillus rhamnosus DUT1908. Sun Y; Liu H; Yang Y; Zhou X; Xiu Z Bioprocess Biosyst Eng; 2021 Sep; 44(9):1935-1941. PubMed ID: 33890154 [TBL] [Abstract][Full Text] [Related]
48. Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced L-lactic acid production capacity. Sun L; Lu Z; Li J; Sun F; Huang R Mol Genet Genomics; 2018 Feb; 293(1):265-276. PubMed ID: 29159508 [TBL] [Abstract][Full Text] [Related]
49. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441. Hujanen M; Linko S; Linko YY; Leisola M Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):126-30. PubMed ID: 11499919 [TBL] [Abstract][Full Text] [Related]
50. L-lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Li Z; Ding S; Li Z; Tan T Biotechnol J; 2006 Dec; 1(12):1453-8. PubMed ID: 17089436 [TBL] [Abstract][Full Text] [Related]
51. Application of a pH feedback-controlled substrate feeding method in lactic acid production. Zhang Y; Cong W; Shi S Appl Biochem Biotechnol; 2010 Dec; 162(8):2149-56. PubMed ID: 20503104 [TBL] [Abstract][Full Text] [Related]
52. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. Bustos G; Moldes AB; Cruz JM; Domínguez JM J Agric Food Chem; 2004 Feb; 52(4):801-8. PubMed ID: 14969534 [TBL] [Abstract][Full Text] [Related]
53. Maximum-biomass prediction of homofermentative Lactobacillus. Cui S; Zhao J; Liu X; Chen YQ; Zhang H; Chen W J Biosci Bioeng; 2016 Jul; 122(1):52-7. PubMed ID: 26896862 [TBL] [Abstract][Full Text] [Related]
54. Lactic acid production from cassava fibrous residue using Lactobacillus plantarum MTCC 1407. Ray RC; Sharma P; Panda SH J Environ Biol; 2009 Sep; 30(5 Suppl):847-52. PubMed ID: 20143717 [TBL] [Abstract][Full Text] [Related]
55. Direct fermentation of L (+)-lactic acid from cassava pulp by solid state culture of Rhizopus oryzae. Phrueksawan P; Kulpreecha S; Sooksai S; Thongchul N Bioprocess Biosyst Eng; 2012 Oct; 35(8):1429-36. PubMed ID: 22476767 [TBL] [Abstract][Full Text] [Related]
56. Effects of intermittent addition of cellulase for production of L-lactic acid from wastewater sludge by simultaneous saccharification and fermentation. Nakasaki K; Adachi T Biotechnol Bioeng; 2003 May; 82(3):263-70. PubMed ID: 12599252 [TBL] [Abstract][Full Text] [Related]
57. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. Wang Y; Li Y; Pei X; Yu L; Feng Y J Biotechnol; 2007 May; 129(3):510-5. PubMed ID: 17320995 [TBL] [Abstract][Full Text] [Related]
58. Not only osmoprotectant: betaine increased lactate dehydrogenase activity and L-lactate production in lactobacilli. Zou H; Wu Z; Xian M; Liu H; Cheng T; Cao Y Bioresour Technol; 2013 Nov; 148():591-5. PubMed ID: 24035452 [TBL] [Abstract][Full Text] [Related]
59. Improved production of live cells of Lactobacillus rhamnosus by continuous cultivation using glucose-yeast extract medium. Ling LS; Mohamad R; Rahim RA; Wan HY; Ariff AB J Microbiol; 2006 Aug; 44(4):439-46. PubMed ID: 16953180 [TBL] [Abstract][Full Text] [Related]
60. Media and process parameters affecting the growth, strain ratios and specific acidifying activities of a mixed lactic starter containing aroma-producing and probiotic strains. Savoie S; Champagne CP; Chiasson S; Audet P J Appl Microbiol; 2007 Jul; 103(1):163-74. PubMed ID: 17584462 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]