BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20564439)

  • 1. Use of waste materials for Lactococcus lactis development.
    Rodríguez N; Torrado A; Cortés S; Domínguez JM
    J Sci Food Agric; 2010 Aug; 90(10):1726-34. PubMed ID: 20564439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternatives for biosurfactants and bacteriocins extraction from Lactococcus lactis cultures produced under different pH conditions.
    Rodríguez N; Salgado JM; Cortés S; Domínguez JM
    Lett Appl Microbiol; 2010 Aug; 51(2):226-33. PubMed ID: 20649753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of Nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae.
    Liu C; Hu B; Liu Y; Chen S
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):751-61. PubMed ID: 18563651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of nisin production from whey by a mixed culture of Lactococcus lactis and Saccharomyces cerevisiae.
    Liu C; Hu B; Liu Y; Chen S
    Appl Biochem Biotechnol; 2006; 129-132():751-61. PubMed ID: 16915685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of nisin production by Lactococcus lactis in periodically re-alkalized cultures.
    Guerra NP; Castro LP
    Biotechnol Appl Biochem; 2003 Oct; 38(Pt 2):157-67. PubMed ID: 12793859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of hemin effect on lactate reduction in Lactococcus lactis.
    Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S
    J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically defined media and auxotrophy of the prolific l-lactic acid producer Lactococcus lactis IO-1.
    Machii M; Watanabe S; Zendo T; Chibazakura T; Sonomoto K; Shimizu-Kadota M; Yoshikawa H
    J Biosci Bioeng; 2013 May; 115(5):481-4. PubMed ID: 23287501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of D-lactic acid from whey permeate.
    Sahoo TK; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5653-5662. PubMed ID: 31115633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the production of nisin by Lactococcus lactis in fed-batch culture.
    Lv W; Zhang X; Cong W
    Appl Microbiol Biotechnol; 2005 Aug; 68(3):322-6. PubMed ID: 15692804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth kinetics of Lactococcus lactis ssp diacetylactis harboring different plasmid content.
    Lee K; Moon SH
    Curr Microbiol; 2003 Jul; 47(1):17-21. PubMed ID: 12783187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch.
    Okano K; Kimura S; Narita J; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1007-13. PubMed ID: 17384945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis.
    Melchiorsen CR; Jokumsen KV; Villadsen J; Israelsen H; Arnau J
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):338-44. PubMed ID: 11935185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation.
    Settanni L; Massitti O; Van Sinderen D; Corsetti A
    J Appl Microbiol; 2005; 99(3):670-81. PubMed ID: 16108809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus.
    Bustos G; Moldes AB; Cruz JM; Domínguez JM
    Biotechnol Prog; 2005; 21(3):793-8. PubMed ID: 15932258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactic acid production using two food processing wastes, canned pineapple syrup and grape invertase, as substrate and enzyme.
    Ueno T; Ozawa Y; Ishikawa M; Nakanishi K; Kimura T
    Biotechnol Lett; 2003 Apr; 25(7):573-77. PubMed ID: 12882147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task Distribution between Acetate and Acetoin Pathways To Prolong Growth in Lactococcus lactis under Respiration Conditions.
    Cesselin B; Garrigues C; Pedersen MB; Roussel C; Gruss A; Gaudu P
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030222
    [No Abstract]   [Full Text] [Related]  

  • 18. Co-fermentation of glucose and citrate by Lactococcus lactis diacetylactis: quantification of the relative metabolic rates by isotopic analysis at natural abundance.
    Goupry S; Gentil E; Akoka S; Robins RJ
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):489-97. PubMed ID: 12750852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant Lactococcus lactis for efficient conversion of cellodextrins into L-lactic acid.
    Gandini C; Tarraran L; Kalemasi D; Pessione E; Mazzoli R
    Biotechnol Bioeng; 2017 Dec; 114(12):2807-2817. PubMed ID: 28802003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of nisin with continuous adsorption to Amberlite XAD-4 resin using Lactococcus lactis N8 and L. lactis LAC48.
    Tolonen M; Saris PE; Siika-Aho M
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):659-65. PubMed ID: 12910326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.