These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 20564569)
1. Enzymes responsible for the conversion of N alpha-[(Benzyloxy)carbonyl]-D-lysine to N alpha-[(Benzyloxy)carbonyl]-D-aminoadipic acid by Rhodococcus sp. AIU Z-35-1. Isobe K; Fukuda N; Nagasawa S; Saitou K Chem Biodivers; 2010 Jun; 7(6):1549-54. PubMed ID: 20564569 [TBL] [Abstract][Full Text] [Related]
2. Enzymes responsible for metabolism of Nα-benzyloxycarbonyl-L-lysine in microorganisms. Isobe K N Biotechnol; 2010 Dec; 27(6):751-4. PubMed ID: 20460177 [TBL] [Abstract][Full Text] [Related]
3. Purification and characterization of a dehydrogenase catalyzing conversion of N alpha-benzyloxycarbonyl-L-aminoadipic-delta-semialdehyde to N alpha-benzyloxycarbonyl-L-aminoadipic acid from rhodococcus sp. AIU Z-35-1. Isobe K; Fukuda N; Nagasawa S J Biosci Bioeng; 2007 Nov; 104(5):398-402. PubMed ID: 18086440 [TBL] [Abstract][Full Text] [Related]
4. Analysis of selective production of Nalpha-benzyloxycarbonyl-L-aminoadipate-delta-semialdehyde and Nalpha-benzyloxycarbonyl-L-aminoadipic acid by Rhodococcus sp. AIU Z-35-1. Isobe K; Fukuda N; Nagasawa S J Biosci Bioeng; 2008 Feb; 105(2):152-6. PubMed ID: 18343343 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Nalpha-benzyloxycarbonyl-L-lysine oxidizing enzyme from Rhodococcus sp. AIU Z-35-1. Isobe K; Nagasawa S J Biosci Bioeng; 2007 Sep; 104(3):218-23. PubMed ID: 17964487 [TBL] [Abstract][Full Text] [Related]
6. A new microbial method for more efficient production of Nalpha-benzyloxycarbonyl-L-aminoadipate delta-semialdehyde and Nalpha-benzyloxycarbonyl-D-aminoadipate delta-semialdehyde. Isobe K; Nagasawa S; Tokuta K; Matuura A; Sakaguchi T; Wakao N J Biosci Bioeng; 2005 Sep; 100(3):288-91. PubMed ID: 16243278 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of enzyme catalyzing conversion of N(alpha)-benzyloxycarbonyl-L-aminoadipic-delta-semialdehyde to N(alpha)-benzyloxycarbonyl-L-aminoadipic acid in Aspergillus niger AKU 3302. Isobe K; Ishikura K; Shimizu S J Biosci Bioeng; 2008 Oct; 106(4):409-11. PubMed ID: 19000620 [TBL] [Abstract][Full Text] [Related]
8. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. Crowther LM; Mathis D; Poms M; Plecko B J Inherit Metab Dis; 2019 Jul; 42(4):620-628. PubMed ID: 30767241 [TBL] [Abstract][Full Text] [Related]
9. Biochemistry: is pyrroloquinoline quinone a vitamin? Rucker R; Storms D; Sheets A; Tchaparian E; Fascetti A Nature; 2005 Feb; 433(7025):E10-1; discussion E11-2. PubMed ID: 15689994 [TBL] [Abstract][Full Text] [Related]
10. Mouse lysine catabolism to aminoadipate occurs primarily through the saccharopine pathway; implications for pyridoxine dependent epilepsy (PDE). Pena IA; Marques LA; Laranjeira ÂB; Yunes JA; Eberlin MN; MacKenzie A; Arruda P Biochim Biophys Acta Mol Basis Dis; 2017 Jan; 1863(1):121-128. PubMed ID: 27615426 [TBL] [Abstract][Full Text] [Related]
11. The measurement of urinary Δ¹-piperideine-6-carboxylate, the alter ego of α-aminoadipic semialdehyde, in Antiquitin deficiency. Struys EA; Bok LA; Emal D; Houterman S; Willemsen MA; Jakobs C J Inherit Metab Dis; 2012 Sep; 35(5):909-16. PubMed ID: 22249334 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. Struys EA; Jakobs C FEBS Lett; 2010 Jan; 584(1):181-6. PubMed ID: 19932104 [TBL] [Abstract][Full Text] [Related]
13. Efficient biosynthesis of α-aminoadipic acid via lysine catabolism in Escherichia coli. Zhang Y; An N; Zhao Y; Li X; Shen X; Wang J; Sun X; Yuan Q Biotechnol Bioeng; 2023 Jan; 120(1):312-317. PubMed ID: 36226358 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous quantification of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate, pipecolic acid and alpha-aminoadipic acid in pyridoxine-dependent epilepsy. Xue J; Wang J; Gong P; Wu M; Yang W; Jiang S; Wu Y; Jiang Y; Zhang Y; Yuzyuk T; Li H; Yang Z Sci Rep; 2019 Aug; 9(1):11371. PubMed ID: 31388081 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a novel l-amino acid oxidase with protein oxidizing activity from Penicillium steckii AIU 027. Isobe K; Taira R; Hoshi Y; Matsuda S; Yamada M; Hibi M; Kishino S; Ogawa J J Biosci Bioeng; 2014 Jun; 117(6):690-5. PubMed ID: 24333187 [TBL] [Abstract][Full Text] [Related]
16. The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. Faust A; Niefind K; Hummel W; Schomburg D J Mol Biol; 2007 Mar; 367(1):234-48. PubMed ID: 17234209 [TBL] [Abstract][Full Text] [Related]
17. Characterization and application of a L-specific amino acid oxidase from Rhodococcus sp. AIU LAB-3. Isobe K; Satou S; Matsumoto E; Yoshida S; Yamada M; Hibi M; Ogawa J J Biosci Bioeng; 2013 Jun; 115(6):613-7. PubMed ID: 23294577 [TBL] [Abstract][Full Text] [Related]
18. Role of pipecolic acid in the biosynthesis of lysine in Rhodotorula glutinis. Kinzel JJ; Bhattacharjee JK J Bacteriol; 1979 May; 138(2):410-7. PubMed ID: 571433 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous determination of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate and pipecolic acid by LC-MS/MS for pyridoxine-dependent seizures and folinic acid-responsive seizures. Sadilkova K; Gospe SM; Hahn SH J Neurosci Methods; 2009 Oct; 184(1):136-41. PubMed ID: 19631689 [TBL] [Abstract][Full Text] [Related]
20. Characterization of four Rhodococcus alcohol dehydrogenase genes responsible for the oxidation of aromatic alcohols. Peng X; Taki H; Komukai S; Sekine M; Kanoh K; Kasai H; Choi SK; Omata S; Tanikawa S; Harayama S; Misawa N Appl Microbiol Biotechnol; 2006 Aug; 71(6):824-32. PubMed ID: 16292529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]