BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 20564573)

  • 1. New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid.
    Poo H; Park C; Kwak MS; Choi DY; Hong SP; Lee IH; Lim YT; Choi YK; Bae SR; Uyama H; Kim CJ; Sung MH
    Chem Biodivers; 2010 Jun; 7(6):1555-62. PubMed ID: 20564573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications.
    Sung MH; Park C; Kim CJ; Poo H; Soda K; Ashiuchi M
    Chem Rec; 2005; 5(6):352-66. PubMed ID: 16278834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis.
    Richard A; Margaritis A
    Biotechnol Bioeng; 2003 May; 82(3):299-305. PubMed ID: 12599256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable water absorbent synthesized from bacterial poly(amino acid)s.
    Kunioka M
    Macromol Biosci; 2004 Mar; 4(3):324-9. PubMed ID: 15468223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of glycerol on production of poly(gamma-Glutamic Acid) in Bacillus subtilis NX-2.
    Wu Q; Xu H; Liang J; Yao J
    Appl Biochem Biotechnol; 2010 Jan; 160(2):386-92. PubMed ID: 18696262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ultra high molecular weight poly-gamma-glutamic acid from Bacillus subtilis (chungkookjang) on corneal wound healing.
    Bae SR; Park C; Choi JC; Poo H; Kim CJ; Sung MH
    J Microbiol Biotechnol; 2010 Apr; 20(4):803-8. PubMed ID: 20467257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal integration of a synthetic expression control sequence achieves poly-gamma-glutamate production in a Bacillus subtilis strain.
    Yeh CM; Wang JP; Lo SC; Chan WC; Lin MY
    Biotechnol Prog; 2010; 26(4):1001-7. PubMed ID: 20564357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cultivation conditions on the production of gamma-PGA with Bacillus subtilis ZJU-7.
    Chen J; Shi F; Zhang B; Zhu F; Cao W; Xu Z; Xu G; Cen P
    Appl Biochem Biotechnol; 2010 Jan; 160(2):370-7. PubMed ID: 18668374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and biochemical characterization of membranous short-chain polyglutamate from Bacillus subtilis.
    Kamei T; Yamashiro D; Horiuchii T; Minouchi Y; Ashiuchi M
    Chem Biodivers; 2010 Jun; 7(6):1563-72. PubMed ID: 20564574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.
    Akagi T; Watanabe K; Kim H; Akashi M
    Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly (glutamic acid)--an emerging biopolymer of commercial interest.
    Bajaj I; Singhal R
    Bioresour Technol; 2011 May; 102(10):5551-61. PubMed ID: 21377358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure of poly(gamma-glutamic acid) produced by Bacillus subtilis consisting of clusters of D- and L-glutamic acid repeating units.
    Wang F; Ishiguro M; Mutsukado M; Fujita K; Tanaka T
    J Agric Food Chem; 2008 Jun; 56(11):4225-8. PubMed ID: 18489108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel functional biodegradable polymer. III. The construction of poly(gamma-glutamic acid)-sulfonate hydrogel with fibroblast growth factor-2 activity.
    Matsusaki M; Serizawa T; Kishida A; Akashi M
    J Biomed Mater Res A; 2005 Jun; 73(4):485-91. PubMed ID: 15900608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel.
    Tsao CT; Chang CH; Lin YY; Wu MF; Wang JL; Han JL; Hsieh KH
    Carbohydr Res; 2010 Aug; 345(12):1774-80. PubMed ID: 20598293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of saquinavir across human brain-microvascular endothelial cells by poly(lactide-co-glycolide) nanoparticles with surface poly-(γ-glutamic acid).
    Kuo YC; Yu HW
    Int J Pharm; 2011 Sep; 416(1):365-75. PubMed ID: 21736932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the production of poly-γ-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates.
    Yong X; Raza W; Yu G; Ran W; Shen Q; Yang X
    Bioresour Technol; 2011 Aug; 102(16):7548-54. PubMed ID: 21665467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-gamma-glutamic acid.
    Wei X; Ji Z; Chen S
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1332-40. PubMed ID: 19504190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus subtilis pgsE (Formerly ywtC) stimulates poly-γ-glutamate production in the presence of zinc.
    Yamashiro D; Yoshioka M; Ashiuchi M
    Biotechnol Bioeng; 2011 Jan; 108(1):226-30. PubMed ID: 20812257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and morphology control of electrospun poly(γ-glutamic acid) nanofibers for biomedical applications.
    Wang S; Cao X; Shen M; Guo R; Bányai I; Shi X
    Colloids Surf B Biointerfaces; 2012 Jan; 89():254-64. PubMed ID: 21982215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Co-production of thrombolytic enzyme and gamma-polyglutamic acid by liquid-culture of Bacillus subtilis SBS].
    Hu C; Liu C; Zheng H; Zhou P
    Wei Sheng Wu Xue Bao; 2009 Jan; 49(1):49-55. PubMed ID: 19388264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.