BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 20564617)

  • 1. SOFT-MI: a novel microfabrication technique integrating soft-lithography and molecular imprinting for tissue engineering applications.
    Vozzi G; Morelli I; Vozzi F; Andreoni C; Salsedo E; Morachioli A; Giusti P; Ciardelli G
    Biotechnol Bioeng; 2010 Aug; 106(5):804-17. PubMed ID: 20564617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecularly imprinted nanoparticles with recognition properties towards a laminin H-Tyr-Ile-Gly-Ser-Arg-OH sequence for tissue engineering applications.
    Rosellini E; Barbani N; Giusti P; Ciardelli G; Cristallini C
    Biomed Mater; 2010 Dec; 5(6):065007. PubMed ID: 20966532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft-molecular imprinted electrospun scaffolds to mimic specific biological tissues.
    Criscenti G; De Maria C; Longoni A; van Blitterswijk CA; Fernandes HAM; Vozzi G; Moroni L
    Biofabrication; 2018 Aug; 10(4):045005. PubMed ID: 30024388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing.
    Fukazawa K; Ishihara K
    Biosens Bioelectron; 2009 Nov; 25(3):609-14. PubMed ID: 19443203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering.
    Han LH; Suri S; Schmidt CE; Chen S
    Biomed Microdevices; 2010 Aug; 12(4):721-5. PubMed ID: 20393801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering.
    Yu TT; Shoichet MS
    Biomaterials; 2005 May; 26(13):1507-14. PubMed ID: 15522752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures.
    Faid K; Voicu R; Bani-Yaghoub M; Tremblay R; Mealing G; Py C; Barjovanu R
    Biomed Microdevices; 2005 Sep; 7(3):179-84. PubMed ID: 16133804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel route in bone tissue engineering: magnetic biomimetic scaffolds.
    Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V
    Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of oligolactone-based scaffolds for bone tissue engineering.
    Vogt S; Berger S; Wilke I; Larcher Y; Weisser J; Schnabelrauch M
    Biomed Mater Eng; 2005; 15(1-2):73-85. PubMed ID: 15623932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of scaffolds from human hair proteins for tissue-engineering applications.
    Verma V; Verma P; Ray P; Ray AR
    Biomed Mater; 2008 Jun; 3(2):025007. PubMed ID: 18458372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modular and supramolecular approach to bioactive scaffolds for tissue engineering.
    Dankers PY; Harmsen MC; Brouwer LA; van Luyn MJ; Meijer EW
    Nat Mater; 2005 Jul; 4(7):568-74. PubMed ID: 15965478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional microfabrication by two-photon polymerization technique.
    Ovsianikov A; Chichkov BN
    Methods Mol Biol; 2012; 868():311-25. PubMed ID: 22692619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotopography induced contact guidance of the F11 cell line during neuronal differentiation: a neuronal model cell line for tissue scaffold development.
    Wieringa P; Tonazzini I; Micera S; Cecchini M
    Nanotechnology; 2012 Jul; 23(27):275102. PubMed ID: 22710035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of collagen hybridized elastic PLCL for tissue engineering.
    Lim JI; Yu B; Lee YK
    Biotechnol Lett; 2008 Dec; 30(12):2085-90. PubMed ID: 18661107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of agar-gelatin hybrid scaffolds using a novel entrapment method for in vitro tissue engineering applications.
    Verma V; Verma P; Kar S; Ray P; Ray AR
    Biotechnol Bioeng; 2007 Feb; 96(2):392-400. PubMed ID: 16850454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.
    Misra SK; Ansari TI; Valappil SP; Mohn D; Philip SE; Stark WJ; Roy I; Knowles JC; Salih V; Boccaccini AR
    Biomaterials; 2010 Apr; 31(10):2806-15. PubMed ID: 20045554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal stem cell differentiation on microstructured poly (methyl methacrylate) substrates.
    Engel E; Martínez E; Mills CA; Funes M; Planell JA; Samitier J
    Ann Anat; 2009 Jan; 191(1):136-44. PubMed ID: 19008086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.