These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20564724)

  • 41. Modeling of chaotic vibrations in symmetric vocal folds.
    Jiang JJ; Zhang Y; Stern J
    J Acoust Soc Am; 2001 Oct; 110(4):2120-8. PubMed ID: 11681389
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tissue-Engineered Vocal Fold Mucosa Implantation in Rabbits.
    Shiba TL; Hardy J; Luegmair G; Zhang Z; Long JL
    Otolaryngol Head Neck Surg; 2016 Apr; 154(4):679-88. PubMed ID: 26956198
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration.
    Titze IR; Jiang JJ; Hsiao TY
    Ann Otol Rhinol Laryngol; 1993 Jan; 102(1 Pt 1):58-63. PubMed ID: 8420470
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vibration parameter extraction from endoscopic image series of the vocal folds.
    Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Collagen Content Limits Optical Coherence Tomography Image Depth in Porcine Vocal Fold Tissue.
    Garcia JA; Benboujja F; Beaudette K; Rogers D; Maurer R; Boudoux C; Hartnick CJ
    Otolaryngol Head Neck Surg; 2016 Nov; 155(5):829-836. PubMed ID: 27352894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measurement of morphologic changes induced by trauma with the use of coherence tomography in porcine vocal cords.
    Nassif NA; Armstrong WB; de Boer JF; Wong BJ
    Otolaryngol Head Neck Surg; 2005 Dec; 133(6):845-50. PubMed ID: 16360501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phonation threshold pressure in a physical model of the vocal fold mucosa.
    Titze IR; Schmidt SS; Titze MR
    J Acoust Soc Am; 1995 May; 97(5 Pt 1):3080-4. PubMed ID: 7759648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Potential Role of Subglottal Convergence Angle and Measurement.
    Xu X; Wang J; Devine EE; Wang Y; Zhong H; Courtright MR; Zhou L; Zhuang P; Jiang JJ
    J Voice; 2017 Jan; 31(1):116.e1-116.e5. PubMed ID: 27133615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The minimum glottal airflow to initiate vocal fold oscillation.
    Jiang JJ; Tao C
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2873-81. PubMed ID: 17550186
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Application of dynamic CT scan in the three-dimensional dynamic morphology changes of laryngeal soft tissue in unilateral vocal fold paralysis patients].
    Ma YL; Wang Y; Cai J; You YJ; Zhang ZY; Wang JA; Jack JQ; Zhuang PY
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Nov; 55(11):1009-1015. PubMed ID: 33210878
    [No Abstract]   [Full Text] [Related]  

  • 51. Quantitative distinction of unique vocal fold subepithelial architectures using optical coherence tomography.
    Maturo S; Benboujja F; Boudoux C; Hartnick C
    Ann Otol Rhinol Laryngol; 2012 Nov; 121(11):754-60. PubMed ID: 23193909
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A rat excised larynx model of vocal fold scar.
    Welham NV; Montequin DW; Tateya I; Tateya T; Choi SH; Bless DM
    J Speech Lang Hear Res; 2009 Aug; 52(4):1008-20. PubMed ID: 19641079
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Medial surface dynamics of an in vivo canine vocal fold during phonation.
    Döllinger M; Berry DA; Berke GS
    J Acoust Soc Am; 2005 May; 117(5):3174-83. PubMed ID: 15957785
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Imaging of the calf vocal fold with high-frequency ultrasound.
    Walsh CJ; Heaton JT; Kobler JB; Szabo TL; Zeitels SM
    Laryngoscope; 2008 Oct; 118(10):1894-9. PubMed ID: 18641528
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparing phonation threshold flow and pressure by abducting excised larynges.
    Hottinger DG; Tao C; Jiang JJ
    Laryngoscope; 2007 Sep; 117(9):1695-9. PubMed ID: 17762794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Separate detection of vocal fold vibration by optoreflectometry: a study of biphonation on excised porcine larynges.
    Ouaknine M; Garrel R; Giovanni A
    Folia Phoniatr Logop; 2003; 55(1):28-38. PubMed ID: 12566764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.