BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 20566203)

  • 1. Preparation of uniform monomer droplets using packed column and continuous polymerization in tube reactor.
    Yasuda M; Goda T; Ogino H; Glomm WR; Takayanagi H
    J Colloid Interface Sci; 2010 Sep; 349(1):392-401. PubMed ID: 20566203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification.
    Oh DH; Balakrishnan P; Oh YK; Kim DD; Yong CS; Choi HG
    Int J Pharm; 2011 Feb; 404(1-2):191-7. PubMed ID: 21055456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of uniform titanium dioxide (TiO2) polystyrene-based composite particles using the glass membrane emulsification process with a subsequent suspension polymerization.
    Supsakulchai A; Ma GH; Nagai M; Omi S
    J Microencapsul; 2003; 20(1):1-18. PubMed ID: 12519698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of uniform-sized agarose beads by microporous membrane emulsification technique.
    Zhou QZ; Wang LY; Ma GH; Su ZG
    J Colloid Interface Sci; 2007 Jul; 311(1):118-27. PubMed ID: 17362974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Preparation and Morphology of Uniform Artificial Polystyrene-Poly(methyl methacrylate) Composite Microspheres by Employing the SPG (Shirasu Porous Glass) Membrane Emulsification Technique.
    Ma GH; Nagai M; Omi S
    J Colloid Interface Sci; 1999 Jun; 214(2):264-282. PubMed ID: 10339367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-modified hemispherical polystyrene/polybutyl methacrylate composite particles.
    Akiva U; Margel S
    J Colloid Interface Sci; 2005 Aug; 288(1):61-70. PubMed ID: 15927562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manufacture of large uniform droplets using rotating membrane emulsification.
    Vladisavljević GT; Williams RA
    J Colloid Interface Sci; 2006 Jul; 299(1):396-402. PubMed ID: 16563411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.
    Omer-Mizrahi M; Margel S
    J Colloid Interface Sci; 2009 Jan; 329(2):228-34. PubMed ID: 18945438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process.
    Wang LY; Gu YH; Zhou QZ; Ma GH; Wan YH; Su ZG
    Colloids Surf B Biointerfaces; 2006 Jul; 50(2):126-35. PubMed ID: 16787743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On inverse miniemulsion polymerization of conventional water-soluble monomers.
    Capek I
    Adv Colloid Interface Sci; 2010 Apr; 156(1-2):35-61. PubMed ID: 20199767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability Characteristics of Dispersed Oil Droplets Prepared by the Microchannel Emulsification Method.
    Liu X; Nakajima M; Nabetani H; Xu Q; Ichikawa S; Sano Y
    J Colloid Interface Sci; 2001 Jan; 233(1):23-30. PubMed ID: 11112302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microchannel liquid-flow focusing and cryo-polymerization preparation of supermacroporous cryogel beads for bioseparation.
    Yun J; Tu C; Lin DQ; Xu L; Guo Y; Shen S; Zhang S; Yao K; Guan YX; Yao SJ
    J Chromatogr A; 2012 Jul; 1247():81-8. PubMed ID: 22695698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug.
    Wang LY; Ma GH; Su ZG
    J Control Release; 2005 Aug; 106(1-2):62-75. PubMed ID: 15922472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of primary emulsions on microsphere size and protein-loading in the double emulsion process.
    Maa YF; Hsu CC
    J Microencapsul; 1997; 14(2):225-41. PubMed ID: 9132473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micro-reactor for preparing uniform molecularly imprinted polymer beads.
    Zourob M; Mohr S; Mayes AG; Macaskill A; Pérez-Moral N; Fielden PR; Goddard NJ
    Lab Chip; 2006 Feb; 6(2):296-301. PubMed ID: 16450041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of an ion-exchange chromatographic support by a "grafting from" strategy based on atom transfer radical polymerization.
    Unsal E; Elmas B; Caglayan B; Tuncel M; Patir S; Tuncel A
    Anal Chem; 2006 Aug; 78(16):5868-75. PubMed ID: 16906734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A predictive approach of the influence of the operating parameters on the size of polymer particles synthesized in a simplified microfluidic system.
    Serra C; Berton N; Bouquey M; Prat L; Hadziioannou G
    Langmuir; 2007 Jul; 23(14):7745-50. PubMed ID: 17530868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.