These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20566235)

  • 41. Temporal attention enhances early visual processing: a review and new evidence from event-related potentials.
    Correa A; Lupiáñez J; Madrid E; Tudela P
    Brain Res; 2006 Mar; 1076(1):116-28. PubMed ID: 16516173
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of temporal difficulty on cerebrocerebellar interaction during visual duration discrimination.
    Shih LY; Yeh TC; Kuo WJ; Tzeng OJ; Hsieh JC
    Behav Brain Res; 2010 Feb; 207(1):155-60. PubMed ID: 19818807
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dopaminergic modulation of the orbitofrontal cortex affects attention, motivation and impulsive responding in rats performing the five-choice serial reaction time task.
    Winstanley CA; Zeeb FD; Bedard A; Fu K; Lai B; Steele C; Wong AC
    Behav Brain Res; 2010 Jul; 210(2):263-72. PubMed ID: 20206211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. No evidence for qualitative differences in the processing of short and long temporal intervals.
    Rammsayer T; Ulrich R
    Acta Psychol (Amst); 2005 Oct; 120(2):141-71. PubMed ID: 15907778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The relationships of impulsivity and cardiovascular responses: the role of gender and task type.
    Allen MT; Hogan AM; Laird LK
    Int J Psychophysiol; 2009 Sep; 73(3):369-76. PubMed ID: 19486914
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural correlates of stopping and self-reported impulsivity.
    Lansbergen MM; Böcker KB; Bekker EM; Kenemans JL
    Clin Neurophysiol; 2007 Sep; 118(9):2089-103. PubMed ID: 17652017
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control.
    Natale E; Marzi CA; Macaluso E
    Neuropsychologia; 2010 Mar; 48(4):1160-4. PubMed ID: 19932706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural correlates of dual-task performance after minimizing task-preparation.
    Erickson KI; Colcombe SJ; Wadhwa R; Bherer L; Peterson MS; Scalf PE; Kramer AF
    Neuroimage; 2005 Dec; 28(4):967-79. PubMed ID: 16109493
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subjective impulsivity and baseline EEG in relation to stopping performance.
    Lansbergen MM; Schutter DJ; Kenemans JL
    Brain Res; 2007 May; 1148():161-9. PubMed ID: 17362884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Different effects of exogenous cues in a visual detection and discrimination task: delayed attention withdrawal and/or speeded motor inhibition?
    Van der Lubbe RH; Vogel RO; Postma A
    J Cogn Neurosci; 2005 Dec; 17(12):1829-40. PubMed ID: 16356322
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Working memory capacity and go/no-go task performance: selective effects of updating, maintenance, and inhibition.
    Redick TS; Calvo A; Gay CE; Engle RW
    J Exp Psychol Learn Mem Cogn; 2011 Mar; 37(2):308-24. PubMed ID: 21299326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Behavioural and ERP indices of response inhibition during a Stop-signal task in children with two subtypes of Attention-Deficit Hyperactivity Disorder.
    Johnstone SJ; Barry RJ; Clarke AR
    Int J Psychophysiol; 2007 Oct; 66(1):37-47. PubMed ID: 17604142
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of response inhibition in temporal preparation: evidence from a go/no-go task.
    Los SA
    Cognition; 2013 Nov; 129(2):328-44. PubMed ID: 23969298
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prime retrieval of motor responses in negative priming.
    Mayr S; Buchner A; Dentale S
    J Exp Psychol Hum Percept Perform; 2009 Apr; 35(2):408-23. PubMed ID: 19331497
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impulsive responding and the sustained attention to response task.
    Helton WS
    J Clin Exp Neuropsychol; 2009 Jan; 31(1):39-47. PubMed ID: 18608658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the limits of advance preparation for a task switch: do people prepare all the task some of the time or some of the task all the time?
    Lien MC; Ruthruff E; Remington RW; Johnston JC
    J Exp Psychol Hum Percept Perform; 2005 Apr; 31(2):299-315. PubMed ID: 15826232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensory MEG responses predict successful and failed inhibition in a stop-signal task.
    Boehler CN; Münte TF; Krebs RM; Heinze HJ; Schoenfeld MA; Hopf JM
    Cereb Cortex; 2009 Jan; 19(1):134-45. PubMed ID: 18440947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Event-related potentials associated with Attention Network Test.
    Neuhaus AH; Urbanek C; Opgen-Rhein C; Hahn E; Ta TM; Koehler S; Gross M; Dettling M
    Int J Psychophysiol; 2010 May; 76(2):72-9. PubMed ID: 20184924
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?
    Dimoska A; Johnstone SJ; Barry RJ
    Brain Cogn; 2006 Nov; 62(2):98-112. PubMed ID: 16814442
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network.
    Coull JT; Nazarian B; Vidal F
    J Cogn Neurosci; 2008 Dec; 20(12):2185-97. PubMed ID: 18457512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.