BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 20566362)

  • 1. The hypothalamus-pituitary-thyroid axis in teleosts and amphibians: endocrine disruption and its consequences to natural populations.
    Carr JA; Patiño R
    Gen Comp Endocrinol; 2011 Jan; 170(2):299-312. PubMed ID: 20566362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction.
    Blanton ML; Specker JL
    Crit Rev Toxicol; 2007; 37(1-2):97-115. PubMed ID: 17364706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hypothalamic-pituitary-thyroid (HPT) axis in frogs and its role in frog development and reproduction.
    Fort DJ; Degitz S; Tietge J; Touart LW
    Crit Rev Toxicol; 2007; 37(1-2):117-61. PubMed ID: 17364707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General background on the hypothalamic-pituitary-thyroid (HPT) axis.
    Zoeller RT; Tan SW; Tyl RW
    Crit Rev Toxicol; 2007; 37(1-2):11-53. PubMed ID: 17364704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hypothalamic-pituitary-thyroid (HPT) axis in birds and its role in bird development and reproduction.
    McNabb FM
    Crit Rev Toxicol; 2007; 37(1-2):163-93. PubMed ID: 17364708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebrafish embryos/larvae for rapid determination of effects on hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-interrenal (HPI) axis: mRNA expression.
    Liu C; Yu H; Zhang X
    Chemosphere; 2013 Nov; 93(10):2327-32. PubMed ID: 24034824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic-pituitary-thyroid axis.
    Wang Q; Liang K; Liu J; Yang L; Guo Y; Liu C; Zhou B
    Aquat Toxicol; 2013 Jan; 126():207-13. PubMed ID: 23220413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of environmental chemicals on wildlife vertebrates.
    Bernanke J; Köhler HR
    Rev Environ Contam Toxicol; 2009; 198():1-47. PubMed ID: 19253040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do hormone-modulating chemicals impact on reproduction and development of wild amphibians?
    Orton F; Tyler CR
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1100-17. PubMed ID: 25335651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening chemicals for thyroid-disrupting activity: A critical comparison of mammalian and amphibian models.
    Pickford DB
    Crit Rev Toxicol; 2010 Nov; 40(10):845-92. PubMed ID: 20684730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish.
    Cheshenko K; Pakdel F; Segner H; Kah O; Eggen RI
    Gen Comp Endocrinol; 2008 Jan; 155(1):31-62. PubMed ID: 17459383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of TSHβ:EGFP transgenic zebrafish as a rapid in vivo model for assessing thyroid-disrupting chemicals.
    Ji C; Jin X; He J; Yin Z
    Toxicol Appl Pharmacol; 2012 Jul; 262(2):149-55. PubMed ID: 22571824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphibians as model to study endocrine disrupters.
    Kloas W; Lutz I
    J Chromatogr A; 2006 Oct; 1130(1):16-27. PubMed ID: 16701677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-dose effects of ammonium perchlorate on the hypothalamic-pituitary-thyroid axis of adult male rats pretreated with PCB126.
    McLanahan ED; Campbell JL; Ferguson DC; Harmon B; Hedge JM; Crofton KM; Mattie DR; Braverman L; Keys DA; Mumtaz M; Fisher JW
    Toxicol Sci; 2007 Jun; 97(2):308-17. PubMed ID: 17379623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endocrine disruptors and thyroid hormone physiology.
    Jugan ML; Levi Y; Blondeau JP
    Biochem Pharmacol; 2010 Apr; 79(7):939-47. PubMed ID: 19913515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA.
    Chan WK; Chan KM
    Aquat Toxicol; 2012 Feb; 108():106-11. PubMed ID: 22100034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origins of the vertebrate hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) endocrine systems: new insights from lampreys.
    Sower SA; Freamat M; Kavanaugh SI
    Gen Comp Endocrinol; 2009 Mar; 161(1):20-9. PubMed ID: 19084529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thyroid disrupting chemicals: mechanisms and mixtures.
    Crofton KM
    Int J Androl; 2008 Apr; 31(2):209-23. PubMed ID: 18217984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waterborne exposure of zebrafish embryos to micromole concentrations of ioxynil and diethylstilbestrol disrupts thyrocyte development.
    Campinho MA; Power DM
    Aquat Toxicol; 2013 Sep; 140-141():279-87. PubMed ID: 23851054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of perchlorate on BDE-47-induced alteration thyroid hormone and gene expression of in the hypothalamus-pituitary-thyroid axis in zebrafish larvae.
    Zhao X; Wang S; Li D; You H; Ren X
    Environ Toxicol Pharmacol; 2013 Nov; 36(3):1176-85. PubMed ID: 24177579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.