These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 20566511)
1. A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Chueh WC; Haile SM Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3269-94. PubMed ID: 20566511 [TBL] [Abstract][Full Text] [Related]
2. Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production. Le Gal A; Julbe A; Abanades S Molecules; 2023 May; 28(11):. PubMed ID: 37298803 [TBL] [Abstract][Full Text] [Related]
3. Ce K edge XAS of ceria-based redox materials under realistic conditions for the two-step solar thermochemical dissociation of water and/or CO2. Rothensteiner M; Sala S; Bonk A; Vogt U; Emerich H; van Bokhoven JA Phys Chem Chem Phys; 2015 Oct; 17(40):26988-96. PubMed ID: 26412705 [TBL] [Abstract][Full Text] [Related]
4. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Chueh WC; Falter C; Abbott M; Scipio D; Furler P; Haile SM; Steinfeld A Science; 2010 Dec; 330(6012):1797-801. PubMed ID: 21205663 [TBL] [Abstract][Full Text] [Related]
5. Oxidising CO to CO2 using ceria nanoparticles. Sayle TX; Parker SC; Sayle DC Phys Chem Chem Phys; 2005 Aug; 7(15):2936-41. PubMed ID: 16189614 [TBL] [Abstract][Full Text] [Related]
6. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
7. High-temperature isothermal chemical cycling for solar-driven fuel production. Hao Y; Yang CK; Haile SM Phys Chem Chem Phys; 2013 Oct; 15(40):17084-92. PubMed ID: 24002380 [TBL] [Abstract][Full Text] [Related]
8. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H(2)O and CO(2). Chueh WC; Haile SM ChemSusChem; 2009; 2(8):735-9. PubMed ID: 19637255 [No Abstract] [Full Text] [Related]
9. Highly Efficient Oxygen-Storage Material with Intrinsic Coke Resistance for Chemical Looping Combustion-Based CO2 Capture. Imtiaz Q; Kurlov A; Rupp JL; Müller CR ChemSusChem; 2015 Jun; 8(12):2055-65. PubMed ID: 25916240 [TBL] [Abstract][Full Text] [Related]
10. A Review of Solar Thermochemical CO Pullar RC; Novais RM; Caetano APF; Barreiros MA; Abanades S; Oliveira FAC Front Chem; 2019; 7():601. PubMed ID: 31552219 [TBL] [Abstract][Full Text] [Related]
11. Giant onsite electronic entropy enhances the performance of ceria for water splitting. Naghavi SS; Emery AA; Hansen HA; Zhou F; Ozolins V; Wolverton C Nat Commun; 2017 Aug; 8(1):285. PubMed ID: 28819153 [TBL] [Abstract][Full Text] [Related]
12. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting. Gibbons WT; Venstrom LJ; De Smith RM; Davidson JH; Jackson GS Phys Chem Chem Phys; 2014 Jul; 16(27):14271-80. PubMed ID: 24914875 [TBL] [Abstract][Full Text] [Related]
13. Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual-scale porosities. Furler P; Scheffe J; Marxer D; Gorbar M; Bonk A; Vogt U; Steinfeld A Phys Chem Chem Phys; 2014 Jun; 16(22):10503-11. PubMed ID: 24736455 [TBL] [Abstract][Full Text] [Related]
14. Shape-controlled ceria-based nanostructures for catalysis applications. Qiao ZA; Wu Z; Dai S ChemSusChem; 2013 Oct; 6(10):1821-33. PubMed ID: 24115732 [TBL] [Abstract][Full Text] [Related]
15. Nanocrystalline ceria powders through citrate-nitrate combustion. Purohit RD; Saha S; Tyagi AK J Nanosci Nanotechnol; 2006 Jan; 6(1):209-14. PubMed ID: 16573097 [TBL] [Abstract][Full Text] [Related]
16. Raman spectroscopy as a probe of temperature and oxidation state for gadolinium-doped ceria used in solid oxide fuel cells. Maher RC; Cohen LF; Lohsoontorn P; Brett DJ; Brandon NP J Phys Chem A; 2008 Feb; 112(7):1497-501. PubMed ID: 18225868 [TBL] [Abstract][Full Text] [Related]
17. Oxygen nonstoichiometry and thermodynamic characterization of Zr doped ceria in the 1573-1773 K temperature range. Takacs M; Scheffe JR; Steinfeld A Phys Chem Chem Phys; 2015 Mar; 17(12):7813-22. PubMed ID: 25714616 [TBL] [Abstract][Full Text] [Related]
18. Splitting CO Takacs M; Ackermann S; Bonk A; Neises-von Puttkamer M; Haueter P; Scheffe JR; Vogt UF; Steinfeld A AIChE J; 2017 Apr; 63(4):1263-1271. PubMed ID: 28405030 [TBL] [Abstract][Full Text] [Related]
19. A correlation between the ionic conductivities and the formation enthalpies of trivalent-doped ceria at relatively low temperatures. Avila-Paredes HJ; Shvareva T; Chen W; Navrotsky A; Kim S Phys Chem Chem Phys; 2009 Oct; 11(38):8580-5. PubMed ID: 19774290 [TBL] [Abstract][Full Text] [Related]
20. Environment-mediated structure, surface redox activity and reactivity of ceria nanoparticles. Sayle TX; Molinari M; Das S; Bhatta UM; Möbus G; Parker SC; Seal S; Sayle DC Nanoscale; 2013 Jul; 5(13):6063-73. PubMed ID: 23719690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]