BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 20566849)

  • 1. Nonconsecutive disulfide bond formation in an essential integral outer membrane protein.
    Ruiz N; Chng SS; Hiniker A; Kahne D; Silhavy TJ
    Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12245-50. PubMed ID: 20566849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential β-barrel protein LptD.
    Denoncin K; Vertommen D; Paek E; Collet JF
    J Biol Chem; 2010 Sep; 285(38):29425-33. PubMed ID: 20615876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export.
    Chng SS; Xue M; Garner RA; Kadokura H; Boyd D; Beckwith J; Kahne D
    Science; 2012 Sep; 337(6102):1665-8. PubMed ID: 22936569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutants in DsbB that appear to redirect oxidation through the disulfide isomerization pathway.
    Pan JL; Sliskovic I; Bardwell JC
    J Mol Biol; 2008 Apr; 377(5):1433-42. PubMed ID: 18325532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LptM promotes oxidative maturation of the lipopolysaccharide translocon by substrate binding mimicry.
    Yang Y; Chen H; Corey RA; Morales V; Quentin Y; Froment C; Caumont-Sarcos A; Albenne C; Burlet-Schiltz O; Ranava D; Stansfeld PJ; Marcoux J; Ieva R
    Nat Commun; 2023 Oct; 14(1):6368. PubMed ID: 37821449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo design and evolution of artificial disulfide isomerase enzymes analogous to the bacterial DsbC.
    Arredondo S; Segatori L; Gilbert HF; Georgiou G
    J Biol Chem; 2008 Nov; 283(46):31469-76. PubMed ID: 18782764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner.
    Vertommen D; Depuydt M; Pan J; Leverrier P; Knoops L; Szikora JP; Messens J; Bardwell JC; Collet JF
    Mol Microbiol; 2008 Jan; 67(2):336-49. PubMed ID: 18036138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant negative lptE mutation that supports a role for LptE as a plug in the LptD barrel.
    Grabowicz M; Yeh J; Silhavy TJ
    J Bacteriol; 2013 Mar; 195(6):1327-34. PubMed ID: 23316047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel.
    Freinkman E; Chng SS; Kahne D
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2486-91. PubMed ID: 21257904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA.
    Chng SS; Dutton RJ; Denoncin K; Vertommen D; Collet JF; Kadokura H; Beckwith J
    Mol Microbiol; 2012 Sep; 85(5):996-1006. PubMed ID: 22809289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of virulence-promoting disulfide bond formation enzyme DsbB is blocked by mutating residues in two distinct regions.
    Landeta C; Meehan BM; McPartland L; Ingendahl L; Hatahet F; Tran NQ; Boyd D; Beckwith J
    J Biol Chem; 2017 Apr; 292(16):6529-6541. PubMed ID: 28232484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways.
    Segatori L; Paukstelis PJ; Gilbert HF; Georgiou G
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10018-23. PubMed ID: 15220477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipoprotein LptE is required for the assembly of LptD by the beta-barrel assembly machine in the outer membrane of Escherichia coli.
    Chimalakonda G; Ruiz N; Chng SS; Garner RA; Kahne D; Silhavy TJ
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2492-7. PubMed ID: 21257909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidase DsbA folds a protein with a nonconsecutive disulfide.
    Messens J; Collet JF; Van Belle K; Brosens E; Loris R; Wyns L
    J Biol Chem; 2007 Oct; 282(43):31302-7. PubMed ID: 17702751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC.
    Hiniker A; Collet JF; Bardwell JC
    J Biol Chem; 2005 Oct; 280(40):33785-91. PubMed ID: 16087673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-pathogenic Escherichia coli acquires virulence by mutating a growth-essential LPS transporter.
    Kaito C; Yoshikai H; Wakamatsu A; Miyashita A; Matsumoto Y; Fujiyuki T; Kato M; Ogura Y; Hayashi T; Isogai T; Sekimizu K
    PLoS Pathog; 2020 Apr; 16(4):e1008469. PubMed ID: 32324807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins.
    Andersen CL; Matthey-Dupraz A; Missiakas D; Raina S
    Mol Microbiol; 1997 Oct; 26(1):121-32. PubMed ID: 9383195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo.
    Maskos K; Huber-Wunderlich M; Glockshuber R
    J Mol Biol; 2003 Jan; 325(3):495-513. PubMed ID: 12498799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered pathways for correct disulfide bond oxidation.
    Ren G; Bardwell JC
    Antioxid Redox Signal; 2011 Jun; 14(12):2399-412. PubMed ID: 21250836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of two homologous disulfide bond systems involved in virulence factor biogenesis in uropathogenic Escherichia coli CFT073.
    Totsika M; Heras B; Wurpel DJ; Schembri MA
    J Bacteriol; 2009 Jun; 191(12):3901-8. PubMed ID: 19376849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.