These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20567319)

  • 1. High gain coherent amplification in thermally stabilized InP:Fe crystals under dc fields.
    Ozkul C; Picoli G; Gravey P; Wolffer N
    Appl Opt; 1990 Jun; 29(18):2711-7. PubMed ID: 20567319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model for resonant intensity dependence of photorefractive two-wave mixing in InP:Fe.
    Picoli G; Gravey P; Ozkul C
    Opt Lett; 1989 Dec; 14(24):1362-4. PubMed ID: 19759683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image amplification by two-wave mixing in photorefractive crystals.
    Hong JH; Chiou AE; Yeh P
    Appl Opt; 1990 Jul; 29(20):3026-9. PubMed ID: 20567371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High photorefractive gain in two-beam coupling with moving fringes in GaAs:Cr crystals.
    Imbert B; Rajbenbach H; Mallick S; Herriau JP; Huignard JP
    Opt Lett; 1988 Apr; 13(4):327-9. PubMed ID: 19745888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gain enhancement by signal beam chopping for two-wave coupling with a BSO crystal.
    Kawata Y; Kawata S; Minami S
    Appl Opt; 1991 Jun; 30(18):2453-7. PubMed ID: 20700231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photorefractive semiconductor single-mode waveguides grown by gas-source molecular-beam epitaxy.
    Chauvet M; Hervé D; Mainguet B; Rébéjac B; Salaün S; Corre AL; Viallet JE
    Opt Lett; 1995 Aug; 20(15):1604-6. PubMed ID: 19862097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy harvesting based on FE-FE transition in ferroelectric single crystals.
    Guyomar D; Pruvost S; Sebald G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):279-85. PubMed ID: 18334334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving grating and intrinsic electron-hole resonance in two-wave mixing in photorefractive InP:Fe.
    Mainguet B; Guiner FL; Picoli G
    Opt Lett; 1990 Sep; 15(17):938-40. PubMed ID: 19770958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplified phase-conjugate beam reflection by four-wave mixing with photorefractive Bi(12)SiO(20) crystals.
    Rajbenbach H; Huignard JP; Refrégier P
    Opt Lett; 1984 Dec; 9(12):558-60. PubMed ID: 19721667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-wave mixing and energy transfer in Bi(12) SiO(20) crystals: application to image amplification and vibration analysis.
    Huignard JP; Marrakehi A
    Opt Lett; 1981 Dec; 6(12):622-4. PubMed ID: 19710792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photorefractive two-wave mixing for image amplification in digital holography.
    Koukourakis N; Abdelwahab T; Li MY; Höpfner H; Lai YW; Darakis E; Brenner C; Gerhardt NC; Hofmann MR
    Opt Express; 2011 Oct; 19(22):22004-23. PubMed ID: 22109051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photorefractive effects in tantalum-doped potassium niobate.
    Clement AE; Gilbreath GC
    Appl Opt; 1991 Jun; 30(18):2458-64. PubMed ID: 20700232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientational dependence of photorefractive two-beam coupling in InP:Fe.
    Strait J; Reed JD; Kukhtarev NV
    Opt Lett; 1990 Feb; 15(4):209-11. PubMed ID: 19759759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DC bias-dependent shift of the resonance frequencies in BST thin film membranes.
    Noeth A; Yamada T; Sherman VO; Muralt P; Tagantsev AK; Setter N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2487-92. PubMed ID: 18276543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial fidelity of image amplification in photorefractive crystals.
    Xie P; Dai JH; Wang PY; Zhang HJ
    Appl Opt; 1996 Dec; 35(36):7102-7. PubMed ID: 21151314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow magnetic relaxation in a high-spin iron(II) complex.
    Freedman DE; Harman WH; Harris TD; Long GJ; Chang CJ; Long JR
    J Am Chem Soc; 2010 Feb; 132(4):1224-5. PubMed ID: 20055389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonant two-wave mixing in photorefractive materials with the aid of dc and ac fields.
    Kalinin VA; Shcherbin K; Solymar L; Takacs J; Webb DJ
    Opt Lett; 1997 Dec; 22(24):1852-4. PubMed ID: 18188385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic study of four-wave-mixing-based electric-field measurements in high-pressure nitrogen plasmas.
    Lempert WR; Kearney SP; Barnat EV
    Appl Opt; 2011 Oct; 50(29):5688-94. PubMed ID: 22015362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photorefractive two-wave mixing in the presence of high-speed optical phase modulation.
    Field CT; Davidson FM
    Appl Opt; 1993 Sep; 32(27):5285-98. PubMed ID: 20856337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic-field-induced superconductivity in a two-dimensional organic conductor.
    Uji S; Shinagawa H; Terashima T; Yakabe T; Terai Y; Tokumoto M; Kobayashi A; Tanaka H; Kobayashi H
    Nature; 2001 Apr; 410(6831):908-10. PubMed ID: 11309610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.