BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20567768)

  • 1. An integrated global strategy for cell lysis, fractionation, enrichment and mass spectrometric analysis of phosphorylated peptides.
    Rogers LD; Fang Y; Foster LJ
    Mol Biosyst; 2010 May; 6(5):822-9. PubMed ID: 20567768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis.
    Wu HY; Tseng VS; Liao PC
    J Proteome Res; 2007 May; 6(5):1812-21. PubMed ID: 17402769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ
    J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of phosphorylation sites by a multi-protease approach with specific phosphopeptide enrichment and NanoLC-MS/MS analysis.
    Schlosser A; Vanselow JT; Kramer A
    Anal Chem; 2005 Aug; 77(16):5243-50. PubMed ID: 16097765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased confidence in large-scale phosphoproteomics data by complementary mass spectrometric techniques and matching of phosphopeptide data sets.
    Alcolea MP; Kleiner O; Cutillas PR
    J Proteome Res; 2009 Aug; 8(8):3808-15. PubMed ID: 19537829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Citrate boosts the performance of phosphopeptide analysis by UPLC-ESI-MS/MS.
    Winter D; Seidler J; Ziv Y; Shiloh Y; Lehmann WD
    J Proteome Res; 2009 Jan; 8(1):418-24. PubMed ID: 19053530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted identification of phosphorylated peptides by off-line HPLC-MALDI-MS/MS using LC retention time prediction.
    Chen VC; Chou CC; Hsieh HY; Perreault H; Khoo KH
    J Mass Spectrom; 2008 Dec; 43(12):1649-58. PubMed ID: 18613259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells.
    Bodenmiller B; Mueller LN; Pedrioli PG; Pflieger D; Jünger MA; Eng JK; Aebersold R; Tao WA
    Mol Biosyst; 2007 Apr; 3(4):275-86. PubMed ID: 17372656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the Efficiency of Phosphopeptide Identification by Tandem Mass Spectrometry.
    Hsu CC; Xue L; Arrington JV; Wang P; Paez Paez JS; Zhou Y; Zhu JK; Tao WA
    J Am Soc Mass Spectrom; 2017 Jun; 28(6):1127-1135. PubMed ID: 28283928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in the analysis of protein phosphorylation.
    Paradela A; Albar JP
    J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential Fe3O4/TiO2 enrichment for phosphopeptide analysis by liquid chromatography/tandem mass spectrometry.
    Choi S; Kim J; Cho K; Park G; Yoon JH; Park S; Yoo JS; Ryu SH; Kim YH; Kim J
    Rapid Commun Mass Spectrom; 2010 May; 24(10):1467-74. PubMed ID: 20411586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of multi-phosphopeptides by muHPLC-ESI-MS/MS with alkaline phosphatase treatment.
    Wang H; Duan J; Zhang L; Liang Z; Zhang W; Zhang Y
    J Sep Sci; 2008 Feb; 31(3):480-7. PubMed ID: 18210378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples.
    Ye J; Zhang X; Young C; Zhao X; Hao Q; Cheng L; Jensen ON
    J Proteome Res; 2010 Jul; 9(7):3561-73. PubMed ID: 20450229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry.
    Yeh TT; Ho MY; Chen WY; Hsu YC; Ku WC; Tseng HW; Chen ST; Chen SF
    Anal Bioanal Chem; 2019 Jun; 411(15):3417-3424. PubMed ID: 31011783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns.
    Pinkse MW; Uitto PM; Hilhorst MJ; Ooms B; Heck AJ
    Anal Chem; 2004 Jul; 76(14):3935-43. PubMed ID: 15253627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced detection and identification of multiply phosphorylated peptides using TiO2 enrichment in combination with MALDI TOF/TOF MS.
    Schmidt A; Csaszar E; Ammerer G; Mechtler K
    Proteomics; 2008 Nov; 8(21):4577-92. PubMed ID: 18972529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilized metal affinity chromatography/reversed-phase enrichment of phosphopeptides and analysis by CID/ETD tandem mass spectrometry.
    Navajas R; Paradela A; Albar JP
    Methods Mol Biol; 2011; 681():337-48. PubMed ID: 20978974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reference-facilitated phosphoproteomics: fast and reliable phosphopeptide validation by microLC-ESI-Q-TOF MS/MS.
    Imanishi SY; Kochin V; Ferraris SE; de Thonel A; Pallari HM; Corthals GL; Eriksson JE
    Mol Cell Proteomics; 2007 Aug; 6(8):1380-91. PubMed ID: 17510049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.