BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 2056779)

  • 1. Evidence for membrane protein oxidation during in vivo aging of human erythrocytes.
    Seppi C; Castellana MA; Minetti G; Piccinini G; Balduini C; Brovelli A
    Mech Ageing Dev; 1991 Mar; 57(3):247-58. PubMed ID: 2056779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative lesion to membrane proteins in senescent erythrocytes.
    Brovelli A; Seppi C; Castellana AM; De Renzis MR; Blasina A; Balduini C
    Biomed Biochim Acta; 1990; 49(2-3):S218-23. PubMed ID: 1696812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes and oxidation of membrane proteins in senescent human erythrocytes.
    Brovelli A; Castellana MA; Minetti G; Piccinini G; Seppi C; De Renzis MR; Balduini C
    Adv Exp Med Biol; 1991; 307():59-73. PubMed ID: 1805602
    [No Abstract]   [Full Text] [Related]  

  • 4. Increased methyl esterification of membrane proteins in aged red-blood cells. Preferential esterification of ankyrin and band-4.1 cytoskeletal proteins.
    Galletti P; Ingrosso D; Nappi A; Gragnaniello V; Iolascon A; Pinto L
    Eur J Biochem; 1983 Sep; 135(1):25-31. PubMed ID: 6224690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of membrane proteins and functional activity of band 3 in human red cell senescence.
    Castellana MA; Piccinini G; Minetti G; Seppi C; Balduini C; Brovelli A
    Arch Gerontol Geriatr; 1992; 15 Suppl 1():101-10. PubMed ID: 18647680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifications of band 3 and oxidation level of membrane proteins in senescent erythrocytes.
    Rucci A; Ensinck MA; Mufarrege N; Cotorruelo C; BorrĂ¡s SG; Racca L; Biondi C; Racca A
    Clin Biochem; 2010 Sep; 43(13-14):1171-3. PubMed ID: 20561513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of two membrane proteins containing extracellular thiol groups in Rhnull human erythrocytes.
    Ridgwell K; Roberts SJ; Tanner MJ; Anstee DJ
    Biochem J; 1983 Jul; 213(1):267-9. PubMed ID: 6412679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal redox status of membrane-protein thiols in sickle erythrocytes.
    Rank BH; Carlsson J; Hebbel RP
    J Clin Invest; 1985 May; 75(5):1531-7. PubMed ID: 3998148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impermeant maleimides. Oriented probes of erythrocyte membrane proteins.
    Abbott RE; Schachter D
    J Biol Chem; 1976 Nov; 251(22):7176-83. PubMed ID: 993209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent thiol reagents. XII. Fluorescent tracer method for protein SH groups using N-(7-dimethylamino-4-methyl coumarinyl) maleimide. An application to the proteins separated by SDS-polyacrylamide gel electrophoresis.
    Yamamoto K; Takamitsu S; Kanaoka Y
    Anal Biochem; 1977 May; 79(1-2):83-94. PubMed ID: 869207
    [No Abstract]   [Full Text] [Related]  

  • 11. Dynamic changes of red cell membrane thiol groups followed by bimane fluorescent labeling.
    Kosower NS; Kosower EM; Zipser Y; Faltin Z; Shomrat R
    Biochim Biophys Acta; 1981 Feb; 640(3):748-59. PubMed ID: 7213703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excess heme in sickle erythrocyte inside-out membranes: possible role in thiol oxidation.
    Kuross SA; Rank BH; Hebbel RP
    Blood; 1988 Apr; 71(4):876-82. PubMed ID: 3355895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein 4.1 in sickle erythrocytes. Evidence for oxidative damage.
    Schwartz RS; Rybicki AC; Heath RH; Lubin BH
    J Biol Chem; 1987 Nov; 262(32):15666-72. PubMed ID: 3316203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte behavior in free-flow electrophoresis is independent of erythrocyte age.
    Bartosz G; Guclu J; Soudain P
    Mech Ageing Dev; 1993 Dec; 72(2):97-103. PubMed ID: 8152321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of sulfhydryl group in individual rat lens protein subunits during galactose cataract development.
    Pan S; Hua JC; Calvin HI; Fu SC
    Yan Ke Xue Bao; 1994 Mar; 10(1):21-6. PubMed ID: 7843379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane properties of senescent and carrier human erythrocytes.
    Castellana MA; De Renzis MR; Piccinini G; Minetti G; Seppi C; Balduini C; Brovelli A
    Adv Exp Med Biol; 1992; 326():91-9. PubMed ID: 1295329
    [No Abstract]   [Full Text] [Related]  

  • 17. Modulation of erythrocyte membrane proteins by membrane cholesterol and lipid fluidity.
    Borochov H; Abbott RE; Schachter D; Shinitzky M
    Biochemistry; 1979 Jan; 18(2):251-5. PubMed ID: 420782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topology of membrane sulfhydryl groups in the human erythrocyte. Demonstration of a non-reactive population in intrinsic proteins.
    Haest CW; Kamp D; Deuticke B
    Biochim Biophys Acta; 1981 May; 643(2):319-26. PubMed ID: 7225384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronology of the formation of vesicles and membrane protein aggregates during erythrocyte aging.
    Ghailani N; Guillemin C; Vigneron C
    Nouv Rev Fr Hematol (1978); 1995; 37(6):313-9. PubMed ID: 8907625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence suggesting direct oxidation of human erythrocyte membrane sulfhydryls by copper.
    Salhany JM; Swanson JC; Cordes KA; Gaines SB; Gaines KC
    Biochem Biophys Res Commun; 1978 Jun; 82(4):1294-9. PubMed ID: 697795
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.