BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20567885)

  • 1. Hydroxyapatite formation from cuttlefish bones: kinetics.
    Ivankovic H; Tkalcec E; Orlic S; Ferrer GG; Schauperl Z
    J Mater Sci Mater Med; 2010 Oct; 21(10):2711-22. PubMed ID: 20567885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of highly porous hydroxyapatite from cuttlefish bone.
    Ivankovic H; Gallego Ferrer G; Tkalcec E; Orlic S; Ivankovic M
    J Mater Sci Mater Med; 2009 May; 20(5):1039-46. PubMed ID: 19132509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones.
    Rocha JH; Lemos AF; Agathopoulos S; Kannan S; Valério P; Ferreira JM
    J Biomed Mater Res A; 2006 Apr; 77(1):160-8. PubMed ID: 16392140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones.
    Kannan S; Rocha JH; Agathopoulos S; Ferreira JM
    Acta Biomater; 2007 Mar; 3(2):243-9. PubMed ID: 17127113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of hydroxyapatite from animal bones.
    Sobczak A; Kowalski Z; Wzorek Z
    Acta Bioeng Biomech; 2009; 11(4):23-8. PubMed ID: 20405812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on tailoring the nanostructured surfaces of cuttlefish bone transformed hydroxyapatite porous ceramics and its effect on osteoblasts].
    Jing L; Yang C; Huan Z; Ke Q; Chang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2019 Mar; 33(3):363-369. PubMed ID: 30129337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermal synthesis and thermal evolution of carbonate-fluorhydroxyapatite scaffold from cuttlefish bones.
    Tkalčec E; Popović J; Orlić S; Milardović S; Ivanković H
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():578-86. PubMed ID: 25063156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cuttlefish bone scaffold for tissue engineering: a novel hydrothermal transformation, chemical-physical, and biological characterization.
    Battistella E; Mele S; Foltran I; Lesci IG; Roveri N; Sabatino P; Rimondini L
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):99-106. PubMed ID: 22798241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface functionalization of cuttlefish bone-derived biphasic calcium phosphate scaffolds with polymeric coatings.
    Neto AS; Fonseca AC; Abrantes JCC; Coelho JFJ; Ferreira JMF
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110014. PubMed ID: 31546414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication, chemical composition change and phase evolution of biomorphic hydroxyapatite.
    Qian J; Kang Y; Zhang W; Li Z
    J Mater Sci Mater Med; 2008 Nov; 19(11):3373-83. PubMed ID: 18545942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactivity and mineralization of natural hydroxyapatite from cuttlefish bone and Bioglass
    Cozza N; Monte F; Bonani W; Aswath P; Motta A; Migliaresi C
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1131-e1142. PubMed ID: 28500666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of sodium calcium borate glasses to form hydroxyapatite.
    Han X; Day DE
    J Mater Sci Mater Med; 2007 Sep; 18(9):1837-47. PubMed ID: 17486301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites.
    Durucan C; Brown PW
    J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods.
    Iyyappan E; Wilson P; Sheela K; Ramya R
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():554-62. PubMed ID: 27040250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering.
    Nga NK; Giang LT; Huy TQ; Viet PH; Migliaresi C
    Colloids Surf B Biointerfaces; 2014 Apr; 116():666-73. PubMed ID: 24274938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity.
    Ma MG
    Int J Nanomedicine; 2012; 7():1781-91. PubMed ID: 22619527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications.
    Kumar GS; Girija EK; Thamizhavel A; Yokogawa Y; Kalkura SN
    J Colloid Interface Sci; 2010 Sep; 349(1):56-62. PubMed ID: 20541216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanochemical synthesis of hydroxyapatite using cuttlefish bone and chicken eggshell as calcium precursors.
    Ferro AC; Guedes M
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():124-140. PubMed ID: 30678898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM).
    Ebrahimi S; Stephen Sipaut Mohd Nasri C; Bin Arshad SE
    PLoS One; 2021; 16(5):e0251009. PubMed ID: 34014966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.