BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 20567949)

  • 1. GPU-based physical cut in interactive haptic simulations.
    Zerbato D; Baschirotto D; Baschirotto D; Botturi D; Fiorini P
    Int J Comput Assist Radiol Surg; 2011 Mar; 6(2):265-72. PubMed ID: 20567949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using the PhysX engine for physics-based virtual surgery with force feedback.
    Maciel A; Halic T; Lu Z; Nedel LP; De S
    Int J Med Robot; 2009 Sep; 5(3):341-53. PubMed ID: 19449317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realistic haptic rendering of interacting deformable objects in virtual environments.
    Duriez C; Dubois F; Kheddar A; Andriot C
    IEEE Trans Vis Comput Graph; 2006; 12(1):36-47. PubMed ID: 16382606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.
    Jia S; Zhang W; Yu X; Pan Z
    Int J Comput Assist Radiol Surg; 2015 Sep; 10(9):1477-91. PubMed ID: 25578992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A GPU-implemented physics-based haptic simulator of tooth drilling.
    Razavi M; Talebi HA; Zareinejad M; Dehghan MR
    Int J Med Robot; 2015 Dec; 11(4):476-85. PubMed ID: 25582358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G2H--graphics-to-haptic virtual environment development tool for PC's.
    Acosta E; Temkin B; Krummel TM; Heinrichs WL
    Stud Health Technol Inform; 2000; 70():1-3. PubMed ID: 10977518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPU-based efficient realistic techniques for bleeding and smoke generation in surgical simulators.
    Halic T; Sankaranarayanan G; De S
    Int J Med Robot; 2010 Dec; 6(4):431-43. PubMed ID: 20878651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic feedback for the GPU-based surgical simulator.
    Sørensen TS; Mosegaard J
    Stud Health Technol Inform; 2006; 119():523-8. PubMed ID: 16404113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force interactions in laparoscopic simulations: haptic rendering of soft tissues.
    Basdogan C; Ho CH; Srinivasan MA; Small SD; Dawson SL
    Stud Health Technol Inform; 1998; 50():385-91. PubMed ID: 10180581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.
    Oishi M; Fukuda M; Hiraishi T; Yajima N; Sato Y; Fujii Y
    J Neurosurg; 2012 Sep; 117(3):555-65. PubMed ID: 22746377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid deformable model for real-time surgical simulation.
    Zhu B; Gu L
    Comput Med Imaging Graph; 2012 Jul; 36(5):356-65. PubMed ID: 22483053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill.
    Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G
    J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting graphics hardware for haptic authoring.
    Kim M; Punak S; Cendan J; Kurenov S; Peters J
    Stud Health Technol Inform; 2006; 119():255-60. PubMed ID: 16404056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.
    Spillmann J; Tuchschmid S; Harders M
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):626-33. PubMed ID: 23428447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphic and haptic modelling of the oesophagus for VR-based medical simulation.
    Choi C; Kim J; Han H; Ahn B; Kim J
    Int J Med Robot; 2009 Sep; 5(3):257-66. PubMed ID: 19444793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments.
    Li M; Sareh S; Xu G; Ridzuan MB; Luo S; Xie J; Wurdemann H; Althoefer K
    PLoS One; 2016; 11(6):e0157681. PubMed ID: 27352234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach for the synthesis of glistening effect in deformable anatomical objects displayed with haptic feedback.
    Prakash CE; Kim J; Manivannan M; Srinivasan MA
    Stud Health Technol Inform; 2002; 85():369-75. PubMed ID: 15458116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Unified Framework for Haptic Interaction in Multimodal Virtual Environments.
    Arikatla VS; Ortiz R; De S; Enquobahrie A
    Stud Health Technol Inform; 2016; 220():19-24. PubMed ID: 27046547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Present and future developments of the virtual surgery and tele-virtual surgery system].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Kobayashi S; Hashizume M
    Nihon Rinsho; 2004 Apr; 62(4):815-23. PubMed ID: 15106354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of haptic degrees of freedom on task performance in virtual surgical environments.
    Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH
    Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.