These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Detecting purely epistatic multi-locus interactions by an omnibus permutation test on ensembles of two-locus analyses. Wongseree W; Assawamakin A; Piroonratana T; Sinsomros S; Limwongse C; Chaiyaratana N BMC Bioinformatics; 2009 Sep; 10():294. PubMed ID: 19761607 [TBL] [Abstract][Full Text] [Related]
7. Mining pure, strict epistatic interactions from high-dimensional datasets: ameliorating the curse of dimensionality. Jiang X; Neapolitan RE PLoS One; 2012; 7(10):e46771. PubMed ID: 23071633 [TBL] [Abstract][Full Text] [Related]
8. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies. Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428 [TBL] [Abstract][Full Text] [Related]
9. bNEAT: a Bayesian network method for detecting epistatic interactions in genome-wide association studies. Han B; Chen XW BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S9. PubMed ID: 21989368 [TBL] [Abstract][Full Text] [Related]
10. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference. Guo X; Zhang J; Cai Z; Du DZ; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):600-610. PubMed ID: 26887006 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models. Russ D; Williams JA; Cardoso VR; Bravo-Merodio L; Pendleton SC; Aziz F; Acharjee A; Gkoutos GV PLoS One; 2022; 17(2):e0263390. PubMed ID: 35180244 [TBL] [Abstract][Full Text] [Related]
12. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Yang C; He Z; Wan X; Yang Q; Xue H; Yu W Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029 [TBL] [Abstract][Full Text] [Related]
13. KNN-MDR: a learning approach for improving interactions mapping performances in genome wide association studies. Abo Alchamlat S; Farnir F BMC Bioinformatics; 2017 Mar; 18(1):184. PubMed ID: 28327091 [TBL] [Abstract][Full Text] [Related]
14. Grid-based stochastic search for hierarchical gene-gene interactions in population-based genetic studies of common human diseases. Moore JH; Andrews PC; Olson RS; Carlson SE; Larock CR; Bulhoes MJ; O'Connor JP; Greytak EM; Armentrout SL BioData Min; 2017; 10():19. PubMed ID: 28572842 [TBL] [Abstract][Full Text] [Related]
15. A fast algorithm for learning epistatic genomic relationships. Jiang X; Neapolitan RE; Barmada MM; Visweswaran S; Cooper GF AMIA Annu Symp Proc; 2010 Nov; 2010():341-5. PubMed ID: 21346997 [TBL] [Abstract][Full Text] [Related]
16. A Markov blanket-based method for detecting causal SNPs in GWAS. Han B; Park M; Chen XW BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652 [TBL] [Abstract][Full Text] [Related]
17. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering. Guo X; Meng Y; Yu N; Pan Y BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145 [TBL] [Abstract][Full Text] [Related]
18. Spatial rank-based multifactor dimensionality reduction to detect gene-gene interactions for multivariate phenotypes. Park M; Jeong HB; Lee JH; Park T BMC Bioinformatics; 2021 Oct; 22(1):480. PubMed ID: 34607566 [TBL] [Abstract][Full Text] [Related]
19. GEP-EpiSeeker: a gene expression programming-based method for epistatic interaction detection in genome-wide association studies. Peng YZ; Lin Y; Huang Y; Li Y; Luo G; Liao J BMC Genomics; 2021 Dec; 22(Suppl 1):910. PubMed ID: 34930147 [TBL] [Abstract][Full Text] [Related]
20. A unified model based multifactor dimensionality reduction framework for detecting gene-gene interactions. Yu W; Lee S; Park T Bioinformatics; 2016 Sep; 32(17):i605-i610. PubMed ID: 27587680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]