These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20568741)

  • 1. Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell.
    Sales BB; Saakes M; Post JW; Buisman CJ; Biesheuvel PM; Hamelers HV
    Environ Sci Technol; 2010 Jul; 44(14):5661-5. PubMed ID: 20568741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis.
    Guler E; Zhang Y; Saakes M; Nijmeijer K
    ChemSusChem; 2012 Nov; 5(11):2262-70. PubMed ID: 23109486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant.
    Veerman J; Saakes M; Metz SJ; Harmsen GJ
    Environ Sci Technol; 2010 Dec; 44(23):9207-12. PubMed ID: 20964356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
    Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M
    Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of wire geometry in energy extraction from salinity differences using capacitive technology.
    Sales BB; Burheim OS; Liu F; Schaetzle O; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2012 Nov; 46(21):12203-8. PubMed ID: 22962998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of Salinity-Gradient Energy by a Hybrid Capacitive-Mixing System.
    Lee J; Yoon H; Lee J; Kim T; Yoon J
    ChemSusChem; 2017 Apr; 10(7):1600-1606. PubMed ID: 28116854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Batteries for efficient energy extraction from a water salinity difference.
    La Mantia F; Pasta M; Deshazer HD; Logan BE; Cui Y
    Nano Lett; 2011 Apr; 11(4):1810-3. PubMed ID: 21413685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
    Yip NY; Brogioli D; Hamelers HV; Nijmeijer K
    Environ Sci Technol; 2016 Nov; 50(22):12072-12094. PubMed ID: 27718544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2011 Dec; 45(23):10273-82. PubMed ID: 22022858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harvesting Energy from Salinity Differences Using Battery Electrodes in a Concentration Flow Cell.
    Kim T; Rahimi M; Logan BE; Gorski CA
    Environ Sci Technol; 2016 Sep; 50(17):9791-7. PubMed ID: 27518198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial gills for robots: MFC behaviour in water.
    Ieropoulos I; Melhuish C; Greenman J
    Bioinspir Biomim; 2007 Sep; 2(3):S83-93. PubMed ID: 17848787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doubled power density from salinity gradients at reduced intermembrane distance.
    Vermaas DA; Saakes M; Nijmeijer K
    Environ Sci Technol; 2011 Aug; 45(16):7089-95. PubMed ID: 21736348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacitive mixing for the extraction of energy from salinity differences: survey of experimental results and electrochemical models.
    Brogioli D; Ziano R; Rica RA; Salerno D; Mantegazza F
    J Colloid Interface Sci; 2013 Oct; 407():457-66. PubMed ID: 23871601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of salt adsorption rate in membrane capacitive deionization.
    Zhao R; Satpradit O; Rijnaarts HH; Biesheuvel PM; van der Wal A
    Water Res; 2013 Apr; 47(5):1941-52. PubMed ID: 23395310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Feasibility of Energy Extraction from Acidic Wastewater by Capacitive Mixing with a Molecular-Sieving Carbon Electrode.
    Shapira B; Avraham E; Aurbach D
    ChemSusChem; 2016 Dec; 9(24):3426-3433. PubMed ID: 27875024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.