These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 20568820)

  • 1. Comparison of the volume charge density of nanofiltration membranes obtained from retention and conductivity experiments.
    Benavente J; Silva V; Prádanos P; Palacio L; Hernández A; Jonson G
    Langmuir; 2010 Jul; 26(14):11841-9. PubMed ID: 20568820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the "DSPM" model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability.
    Labbez C; Fievet P; Thomas F; Szymczyk A; Vidonne A; Foissy A; Pagetti P
    J Colloid Interface Sci; 2003 Jun; 262(1):200-11. PubMed ID: 16256596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of steric, electric, and dielectric effects on membrane potential.
    Lanteri Y; Szymczyk A; Fievet P
    Langmuir; 2008 Aug; 24(15):7955-62. PubMed ID: 18616229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements.
    Lanteri Y; Fievet P; Szymczyk A
    J Colloid Interface Sci; 2009 Mar; 331(1):148-55. PubMed ID: 19081573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the Zeta Potential of Porous Membranes Using Electrolyte Conductivity inside Pores.
    Fievet P; Szymczyk A; Labbez C; Aoubiza B; Simon C; Foissy A; Pagetti J
    J Colloid Interface Sci; 2001 Mar; 235(2):383-390. PubMed ID: 11254318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the dielectric constant inside pores of nanofiltration membranes from membrane potential measurements.
    Escoda A; Lanteri Y; Fievet P; Déon S; Szymczyk A
    Langmuir; 2010 Sep; 26(18):14628-35. PubMed ID: 20795661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane potential in multi-ionic mixtures.
    Lanteri Y; Szymczyk A; Fievet P
    J Phys Chem B; 2009 Jul; 113(27):9197-204. PubMed ID: 19518100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes.
    Szymczyk A; Fatin-Rouge N; Fievet P
    J Colloid Interface Sci; 2007 May; 309(2):245-52. PubMed ID: 17321538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the charge regulation model to transport of ions through hydrophilic membranes: one-dimensional transport model for narrow pores (nanofiltration).
    de Lint WB; Biesheuvel PM; Verweij H
    J Colloid Interface Sci; 2002 Jul; 251(1):131-42. PubMed ID: 16290711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical characterization of an asymmetric nanofiltration membrane with NaCl and KCl solutions: influence of membrane asymmetry on transport parameters.
    Cañas A; Benavente J
    J Colloid Interface Sci; 2002 Feb; 246(2):328-34. PubMed ID: 16290419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energies of the ion equilibrium partition of KCl into nanofiltration membranes based on transmembrane electrical potential and rejection.
    Tu CH; Fang YY; Zhu J; Van der Bruggen B; Wang XL
    Langmuir; 2011 Aug; 27(16):10274-81. PubMed ID: 21728362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2008 Dec; 328(2):353-66. PubMed ID: 18930248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow of Multicomponent Electrolyte Solutions through Narrow Pores of Nanofiltration Membranes.
    Starov VM; Bowen WR; Welfoot JS
    J Colloid Interface Sci; 2001 Aug; 240(2):509-524. PubMed ID: 11482960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physico-chemical characterization of nanofiltration membranes.
    Boussu K; De Baerdemaeker J; Dauwe C; Weber M; Lynn KG; Depla D; Aldea S; Vankelecom IF; Vandecasteele C; Van der Bruggen B
    Chemphyschem; 2007 Feb; 8(3):370-9. PubMed ID: 17226875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport properties and electrokinetic characterization of an amphoteric nanofilter.
    Szymczyk A; Sbaï M; Fievet P; Vidonne A
    Langmuir; 2006 Apr; 22(8):3910-9. PubMed ID: 16584275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on Total Volume Membrane Charge Density in the Nanofiltration of Aqueous Solutions of Nitrate Salts of Heavy Metals.
    Marecka-Migacz A; Mitkowski PT; Nędzarek A; Różański J; Szaferski W
    Membranes (Basel); 2020 Sep; 10(9):. PubMed ID: 32937943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes.
    Szymczyk A; Labbez C; Fievet P; Vidonne A; Foissy A; Pagetti J
    Adv Colloid Interface Sci; 2003 Mar; 103(1):77-94. PubMed ID: 12689761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-rejection, electrokinetic and electrochemical properties of a nanoporous track-etched membrane and their interpretation by means of space charge model.
    Yaroshchuk A; Boiko Y; Makovetskiy A
    Langmuir; 2009 Aug; 25(16):9605-14. PubMed ID: 19585984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.