BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20568825)

  • 1. High-efficiency Förster resonance energy transfer in solid-state dye sensitized solar cells.
    Mor GK; Basham J; Paulose M; Kim S; Varghese OK; Vaish A; Yoriya S; Grimes CA
    Nano Lett; 2010 Jul; 10(7):2387-94. PubMed ID: 20568825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homo- and Heterodimeric Dyes for Dye-Sensitized Solar Cells: Panchromatic Light Absorption and Modulated Open Circuit Potential.
    Sil MC; Sudhakar V; Singh AK; Kavungathodi MFM; Nithyanandhan J
    Chempluschem; 2018 Nov; 83(11):998-1007. PubMed ID: 31950728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer.
    Patwari J; Sardar S; Liu B; Lemmens P; Pal SK
    Beilstein J Nanotechnol; 2017; 8():1705-1713. PubMed ID: 28875108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells.
    Hardin BE; Sellinger A; Moehl T; Humphry-Baker R; Moser JE; Wang P; Zakeeruddin SM; Grätzel M; McGehee MD
    J Am Chem Soc; 2011 Jul; 133(27):10662-7. PubMed ID: 21619039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascade Förster Resonance Energy Transfer Studies for Enhancement of Light Harvesting on Dye-Sensitized Solar Cells.
    Efa MT; Huang JC; Imae T
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells.
    Hardin BE; Yum JH; Hoke ET; Jun YC; Péchy P; Torres T; Brongersma ML; Nazeeruddin MK; Grätzel M; McGehee MD
    Nano Lett; 2010 Aug; 10(8):3077-83. PubMed ID: 20617816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating multiple energy relay dyes in liquid dye-sensitized solar cells.
    Yum JH; Hardin BE; Hoke ET; Baranoff E; Zakeeruddin SM; Nazeeruddin MK; Torres T; McGehee MD; Grätzel M
    Chemphyschem; 2011 Feb; 12(3):657-61. PubMed ID: 21344598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.
    Lee E; Kim C; Jang J
    Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced light harvesting from Först-type resonance energy transfer in the quasi-solid state dye-sensitized solar cells.
    Trang TT; Cheon JH; Lee JG; Kim JH
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3301-4. PubMed ID: 22849111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells.
    Hoke ET; Hardin BE; McGehee MD
    Opt Express; 2010 Feb; 18(4):3893-904. PubMed ID: 20389400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge collection and pore filling in solid-state dye-sensitized solar cells.
    Snaith HJ; Humphry-Baker R; Chen P; Cesar I; Zakeeruddin SM; Grätzel M
    Nanotechnology; 2008 Oct; 19(42):424003. PubMed ID: 21832663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells.
    Yang L; Cappel UB; Unger EL; Karlsson M; Karlsson KM; Gabrielsson E; Sun L; Boschloo G; Hagfeldt A; Johansson EM
    Phys Chem Chem Phys; 2012 Jan; 14(2):779-89. PubMed ID: 22116450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance.
    Narayanan R; Das A; Deepa M; Srivastava AK
    Chemphyschem; 2013 Dec; 14(17):4010-21. PubMed ID: 24259302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional interface modification of energy relay dye in quasi-solid dye-sensitized solar cells.
    Gao R; Cui Y; Liu X; Wang L
    Sci Rep; 2014 Jul; 4():5570. PubMed ID: 24993900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-efficiency solid-state dye-sensitized solar cells based on TiO(2)-coated ZnO nanowire arrays.
    Xu C; Wu J; Desai UV; Gao D
    Nano Lett; 2012 May; 12(5):2420-4. PubMed ID: 22486787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Built-in quantum dot antennas in dye-sensitized solar cells.
    Buhbut S; Itzhakov S; Tauber E; Shalom M; Hod I; Geiger T; Garini Y; Oron D; Zaban A
    ACS Nano; 2010 Mar; 4(3):1293-8. PubMed ID: 20155968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Engineering of Near Infrared Absorbing Thienopyrazine Double Donor Double Acceptor Organic Dyes for Dye-Sensitized Solar Cells.
    Cheema H; Peddapuram A; Adams RE; McNamara L; Hunt LA; Le N; Watkins DL; Hammer NI; Schmehl RH; Delcamp JH
    J Org Chem; 2017 Dec; 82(23):12038-12049. PubMed ID: 29023117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Computational Modeling of Fluorescence Resonance Energy Transfer in Co-Sensitized Dye Solar Cells.
    Pastore M; Angelis FD
    J Phys Chem Lett; 2012 Aug; 3(16):2146-53. PubMed ID: 26295762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.